Subscribe to R bloggers feed R bloggers
R news and tutorials contributed by hundreds of R bloggers
Updated: 4 hours 27 min ago

Exploratory Data Analysis of Ancient Texts with rperseus

Tue, 12/05/2017 - 01:00

(This article was first published on rOpenSci - open tools for open science, and kindly contributed to R-bloggers)

Introduction

When I was in grad school at Emory, I had a favorite desk in the library. The desk wasn’t particularly cozy or private, but what it lacked in comfort it made up for in real estate. My books and I needed room to operate. Students of the ancient world require many tools, and when jumping between commentaries, lexicons, and interlinears, additional clutter is additional “friction”, i.e., lapses in thought due to frustration. Technical solutions to this clutter exist, but the best ones are proprietary and expensive. Furthermore, they are somewhat inflexible, and you may have to shoehorn your thoughts into their framework. More friction.

Interfacing with the Perseus Digital Library was a popular online alternative. The library includes a catalog of classical texts, a Greek and Latin lexicon, and a word study tool for appearances and references in other literature. If the university library’s reference copies of BDAG1 and Synopsis Quattuor Evangeliorum2 were unavailable, Perseus was our next best thing.

Fast forward several years, and I’ve abandoned my quest to become a biblical scholar. Much to my father’s dismay, I’ve learned writing code is more fun than writing exegesis papers. Still, I enjoy dabbling with dead languages, and it was the desire to wed my two loves, biblical studies and R, that birthed my latest package, rperseus. The goal of this package is to furnish classicists with texts of the ancient world and a toolkit to unpack them.

Exploratory Data Analysis in Biblical Studies

Working with the Perseus Digital Library was already a trip down memory lane, but here’s an example of how I would have leveraged rperseus many years ago.

My best papers often sprung from the outer margins of my Nestle-Aland Novum Testamentum Graece. Here the editors inserted cross references to parallel vocabulary, themes, and even grammatical constructions. Given the intertextuality of biblical literature, the margins are a rich source of questions: Where else does the author use similar vocabulary? How is the source material used differently? Does the literary context affect our interpretation of a particular word? This is exploratory data analysis in biblical studies.

Unfortunately the excitement of your questions is incommensurate with the tedium of the process–EDA continues by flipping back and forth between books, dog-earring pages, and avoiding paper cuts. rperseus aims to streamline this process with two functions: get_perseus_text and perseus_parallel. The former returns a data frame containing the text from any work in the Perseus Digital Library, and the latter renders a parallel in ggplot2.

Suppose I am writing a paper on different expressions of love in Paul’s letters. Naturally, I start in 1 Corinthians 13, the famed “Love Chapter” often heard at weddings and seen on bumper stickers. I finish the chapter and turn to the margins. In the image below, I see references to Colossians 1:4, 1 Thessalonians 1:3, 5:8, Hebrews 10:22-24, and Romans 8:35-39.


1 Corinithians 13 in Nestle-Aland Novum Testamentum Graece

Ignoring that some scholars exclude Colossians from the “authentic” letters, let’s see the references alongside each other:

library(rperseus) #devtools::install_github(“ropensci/rperseus”) library(tidyverse) tribble( ~label, ~excerpt, "Colossians", "1.4", "1 Thessalonians", "1.3", "1 Thessalonians", "5.8", "Romans", "8.35-8.39" ) %>% left_join(perseus_catalog) %>% filter(language == "grc") %>% select(urn, excerpt) %>% pmap_df(get_perseus_text) %>% perseus_parallel(words_per_row = 4)

A brief explanation: First, I specify the labels and excerpts within a tibble. Second, I join the lazily loaded perseus_catalog onto the data frame. Third, I filter for the Greek3 and select the columns containing the arguments required for get_perseus_text. Fourth, I map over each urn and excerpt, returning another data frame. Finally, I pipe the output into perseus_parallel.

The key word shared by each passage is agape (“love”). Without going into detail, it might be fruitful to consider the references alongside each other, pondering how the semantic range of agape expands or contracts within the Pauline corpus. Paul had a penchant for appropriating and recasting old ideas–often in slippery and unexpected ways–and your Greek lexicon provides a mere approximation. In other words, how can we move from the dictionary definition of agape towards Paul’s unique vision?

If your Greek is rusty, you can parse each word with parse_excerpt by locating the text’s urn within the perseus_catalog object.

parse_excerpt(urn = "urn:cts:greekLit:tlg0031.tlg012.perseus-grc2", excerpt = "1.4") word form verse part_of_speech person number tense mood voice gender case degree ἀκούω ἀκούσαντες 1.4 verb NA plural aorist participle active masculine nominative NA ὁ τὴν 1.4 article NA singular NA NA NA feminine accusative NA πίστις πίστιν 1.4 noun NA singular NA NA NA feminine accusative NA ὑμός ὑμῶν 1.4 pronoun NA plural NA NA NA masculine genative NA

If your Greek is really rusty, you can also flip the language filter to “eng” to view an older English translation.4 And if the margin references a text from the Old Testament, you can call the Septuagint as well as the original Hebrew.5

tribble( ~label, ~excerpt, "Genesis", "32.31", "Genesis, pointed", "32.31", "Numeri", "12.8", "Numbers, pointed", "12.8" ) %>% left_join(perseus_catalog) %>% filter(language %in% c("grc", "hpt")) %>% select(urn, excerpt) %>% pmap_df(get_perseus_text) %>% perseus_parallel()

Admittedly, there is some “friction” here in joining the perseus_catalog onto the initial tibble. There is a learning curve with getting acquainted with the idiosyncrasies of the catalog object. A later release will aim to streamline this workflow.

Future Work

Check the vignette for a more general overview of rperseus. In the meantime, I look forward to getting more intimately acquainted with the Perseus Digital Library. Tentative plans to extend rperseus a Shiny interface to further reduce “friction” and a method of creating a “book” of custom parallels with bookdown.

Acknowledgements

I want to thank my two rOpenSci reviewers, Ildikó Czeller and François Michonneau, for coaching me through the review process. They were the first two individuals to ever scrutinize my code, and I was lucky to hear their feedback. rOpenSci onboarding is truly a wonderful process.

  1. Bauer, Walter. A Greek-English Lexicon of the New Testament and Other Early Christian Literature. Edited by Frederick W. Danker. 3rd ed. Chicago: University of Chicago Press, 2000.
  2. Aland, Kurt. Synopsis Quattuor Evangeliorum. Deutsche Bibelgesellschaft, 1997.
  3. The Greek text from the Perseus Digital Library is from 1885 standards. The advancement of textual criticism in the 20th century led to a more stable text you would find in current editions of the Greek New Testament.
  4. The English translation is from Rainbow Missions, Inc. World English Bible. Rainbow Missions, Inc.; revision of the American Standard Version of 1901. I’ve toyed with the idea of incorporating more modern translations, but that would require require resources beyond the Perseus Digital Library.
  5. “hpt” is the pointed Hebrew text from Codex Leningradensis.
var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

To leave a comment for the author, please follow the link and comment on their blog: rOpenSci - open tools for open science. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

Usage of ruler package

Tue, 12/05/2017 - 01:00

(This article was first published on QuestionFlow , and kindly contributed to R-bloggers)

Usage examples of ruler package: dplyr-style exploration and validation of data frame like objects.

Prologue

My previous post tells a story about design of my ruler package, which presents tools for “… creating data validation pipelines and tidy reports”. This package offers a framework for exploring and validating data frame like objects using dplyr grammar of data manipulation.

This post is intended to show some close to reality ruler usage examples. Described methods and approaches reflect package design. Along the way you will learn why Yoda and Jabba the Hutt are “outliers” among core “Star Wars” characters.

For more information see README (for relatively brief comprehensive introduction) or vignettes (for more thorough description of package capabilities).

Beware of a lot of code.

Overview suppressMessages(library(dplyr)) suppressMessages(library(purrr)) library(ruler)

The general way of performing validation with ruler can be described with following steps:

  • Formulate a validation task. It is usually stated in the form of a yes-no question or true-false statement about some part (data unit) of an input data frame. Data unit can be one of: data [as a whole], group of rows [as a whole], column [as a whole], row [as a whole], cell. For example, does every column contain elements with sum more than 100?.
  • Create a dplyr-style validation function (rule pack) which checks desired data unit for obedience to [possibly] several rules: mtcars %>% summarise_all(funs(enough_sum = sum(.) > 100))
    • Use ruler’s function rules() instead of explicit or implicit usage of funs():
    mtcars %>% summarise_all(rules(enough_sum = sum(.) > 100)) . %>% summarise_all(rules(enough_sum = sum(.) > 100))
    • Wrap with rule specification function to explicitly identify validated data unit and to name rule pack. In this case it is col_packs() for column data unit with “is_enough_sum” as rule pack name:
    col_packs( is_enough_sum = . %>% summarise_all(rules(is_enough = sum(.) > 100)) )
  • Expose data to rules to obtain validation result (exposure). Use ruler’s expose() function for that. It doesn’t modify contents of input data frame but creates/updates exposure attribute. Exposure is a list with information about used rule packs (packs_info) and tidy data validation report (report).
  • Act after exposure. It can be:
    • Observing validation results with get_exposure(), get_packs_info() or get_report().
    • Making assertions if specific rules are not followed in desired way.
    • Imputing input data frame based on report.

In examples we will use starwars data from dplyr package (to celebrate an upcoming new episode). It is a tibble with every row describing one “Star Wars” character. Every example starts with a validation task stated in italic and performs validation from beginning to end.

Create rule packs Data

Does starwars have 1) number of rows 1a) more than 50; 1b) less than 60; 2) number of columns 2a) more than 10; 2b) less than 15?

check_data_dims <- data_packs( check_dims = . %>% summarise( nrow_low = nrow(.) >= 50, nrow_up = nrow(.) <= 60, ncol_low = ncol(.) >= 10, ncol_up = ncol(.) <= 15 ) ) starwars %>% expose(check_data_dims) %>% get_exposure() ## Exposure ## ## Packs info: ## # A tibble: 1 x 4 ## name type fun remove_obeyers ## ## 1 check_dims data_pack TRUE ## ## Tidy data validation report: ## # A tibble: 1 x 5 ## pack rule var id value ## ## 1 check_dims nrow_up .all 0 FALSE

The result is interpreted as follows:

  • Data was exposed to one rule pack for data as a whole (data rule pack) named “check_dims”. For it all obeyers (data units which follow specified rule) were removed from validation report.
  • Combination of var equals .all and id equals 0 means that data as a whole is validated.
  • Input data frame doesn’t obey (because value is equal to FALSE) rule nrow_up from rule pack check_dims.

Does starwars have enough rows for characters 1) with blond hair; 2) humans; 3) humans with blond hair?

check_enough_rows <- data_packs( enough_blond = . %>% filter(hair_color == "blond") %>% summarise(is_enough = n() > 10), enough_humans = . %>% summarise( is_enough = sum(species == "Human", na.rm = TRUE) > 30 ), ehough_blond_humans = . %>% filter( hair_color == "blond", species == "Human" ) %>% summarise(is_enough = n() > 5) ) starwars %>% expose(check_enough_rows) %>% get_exposure() ## Exposure ## ## Packs info: ## # A tibble: 3 x 4 ## name type fun remove_obeyers ## ## 1 enough_blond data_pack TRUE ## 2 enough_humans data_pack TRUE ## 3 ehough_blond_humans data_pack TRUE ## ## Tidy data validation report: ## # A tibble: 2 x 5 ## pack rule var id value ## ## 1 enough_blond is_enough .all 0 FALSE ## 2 ehough_blond_humans is_enough .all 0 FALSE

New information gained from example:

  • Rule specification functions can be supplied with multiple rule packs all of which will be independently used during exposing.

Does starwars have enough numeric columns?

check_enough_num_cols <- data_packs( enough_num_cols = . %>% summarise( is_enough = sum(map_lgl(., is.numeric)) > 1 ) ) starwars %>% expose(check_enough_num_cols) %>% get_report() ## Tidy data validation report: ## # A tibble: 0 x 5 ## # ... with 5 variables: pack , rule , var , id , ## # value
  • If no breaker is found get_report() returns tibble with zero rows and usual columns.
Group

Does group defined by hair color and gender have a member from Tatooine?

has_hair_gender_tatooine <- group_packs( hair_gender_tatooine = . %>% group_by(hair_color, gender) %>% summarise(has_tatooine = any(homeworld == "Tatooine")), .group_vars = c("hair_color", "gender"), .group_sep = "__" ) starwars %>% expose(has_hair_gender_tatooine) %>% get_report() ## Tidy data validation report: ## # A tibble: 12 x 5 ## pack rule var id value ## ## 1 hair_gender_tatooine has_tatooine auburn__female 0 FALSE ## 2 hair_gender_tatooine has_tatooine auburn, grey__male 0 FALSE ## 3 hair_gender_tatooine has_tatooine auburn, white__male 0 FALSE ## 4 hair_gender_tatooine has_tatooine blonde__female 0 FALSE ## 5 hair_gender_tatooine has_tatooine grey__male 0 FALSE ## # ... with 7 more rows
  • group_packs() needs grouping columns supplied via .group_vars.
  • Column var of validation report contains levels of grouping columns to identify group. By default their are pasted together with .. To change that supply .group_sep argument.
  • 12 combinations of hair_color and gender don’t have a character from Tatooine. They are “auburn”-“female”, “auburn, grey”-“male” and so on.
Column

Does every list-column have 1) enough average length; 2) enough unique elements?

check_list_cols <- col_packs( check_list_cols = . %>% summarise_if( is.list, rules( is_enough_mean = mean(map_int(., length)) >= 1, length(unique(unlist(.))) >= 10 ) ) ) starwars %>% expose(check_list_cols) %>% get_report() ## Tidy data validation report: ## # A tibble: 3 x 5 ## pack rule var id value ## ## 1 check_list_cols is_enough_mean vehicles 0 FALSE ## 2 check_list_cols is_enough_mean starships 0 FALSE ## 3 check_list_cols rule..2 films 0 FALSE
  • To specify rule functions inside dplyr’s scoped verbs use ruler::rules(). It powers correct output interpretation during exposing process and imputes missing rule names based on the present rules in current rule pack.
  • Columns vehicles and starships don’t have enough average length and column films doesn’t have enough unique elements.

Are all values of column birth_year non-NA?

starwars %>% expose( col_packs( . %>% summarise_at( vars(birth_year = "birth_year"), rules(all_present = all(!is.na(.))) ) ) ) %>% get_report() ## Tidy data validation report: ## # A tibble: 1 x 5 ## pack rule var id value ## ## 1 col_pack..1 all_present birth_year 0 FALSE
  • To correctly validate one column with scoped dplyr verb it should be a named argument inside vars. It is needed for correct interpretation of rule pack output.
Row

Has character appeared in enough films? As character is defined by row, this is a row pack.

has_enough_films <- row_packs( enough_films = . %>% transmute(is_enough = map_int(films, length) >= 3) ) starwars %>% expose(has_enough_films) %>% get_report() %>% left_join(y = starwars %>% transmute(id = 1:n(), name), by = "id") %>% print(.validate = FALSE) ## Tidy data validation report: ## # A tibble: 64 x 6 ## pack rule var id value name ## ## 1 enough_films is_enough .all 8 FALSE R5-D4 ## 2 enough_films is_enough .all 9 FALSE Biggs Darklighter ## 3 enough_films is_enough .all 12 FALSE Wilhuff Tarkin ## 4 enough_films is_enough .all 15 FALSE Greedo ## 5 enough_films is_enough .all 18 FALSE Jek Tono Porkins ## # ... with 59 more rows
  • 64 characters haven’t appeared in 3 films or more. Those are characters described in starwars in rows 8, 9, etc. (counting based on input data).

Does character with height less than 100 is a droid?

is_short_droid <- row_packs( is_short_droid = . %>% filter(height < 100) %>% transmute(is_droid = species == "Droid") ) starwars %>% expose(is_short_droid) %>% get_report() %>% left_join(y = starwars %>% transmute(id = 1:n(), name, height), by = "id") %>% print(.validate = FALSE) ## Tidy data validation report: ## # A tibble: 5 x 7 ## pack rule var id value name height ## ## 1 is_short_droid is_droid .all 19 FALSE Yoda 66 ## 2 is_short_droid is_droid .all 29 FALSE Wicket Systri Warrick 88 ## 3 is_short_droid is_droid .all 45 FALSE Dud Bolt 94 ## 4 is_short_droid is_droid .all 72 FALSE Ratts Tyerell 79 ## 5 is_short_droid is_droid .all 73 NA R4-P17 96
  • One can expose only subset of rows by using filter or slice. The value of id column in result will reflect row number in the original input data frame. This feature is powered by keyholder package. In order to use it, rule pack should be created using its supported functions.
  • value equal to NA is treated as rule breaker.
  • 5 “not tall” characters are not droids.
Cell

Is non-NA numeric cell not an outlier based on z-score? This is a bit tricky. To present outliers as rule breakers one should ask whether cell is not outlier.

z_score <- function(x, ...) {abs(x - mean(x, ...)) / sd(x, ...)} cell_isnt_outlier <- cell_packs( dbl_not_outlier = . %>% transmute_if( is.numeric, rules(isnt_out = z_score(., na.rm = TRUE) < 3 | is.na(.)) ) ) starwars %>% expose(cell_isnt_outlier) %>% get_report() %>% left_join(y = starwars %>% transmute(id = 1:n(), name), by = "id") %>% print(.validate = FALSE) ## Tidy data validation report: ## # A tibble: 4 x 6 ## pack rule var id value name ## ## 1 dbl_not_outlier isnt_out height 19 FALSE Yoda ## 2 dbl_not_outlier isnt_out mass 16 FALSE Jabba Desilijic Tiure ## 3 dbl_not_outlier isnt_out birth_year 16 FALSE Jabba Desilijic Tiure ## 4 dbl_not_outlier isnt_out birth_year 19 FALSE Yoda
  • 4 non-NA numeric cells appear to be an outlier within their column.
Expose data to rules

Do groups defined by species, gender and eye_color (3 different checks) have appropriate size?

starwars %>% expose( group_packs(. %>% group_by(species) %>% summarise(isnt_many = n() <= 5), .group_vars = "species") ) %>% expose( group_packs(. %>% group_by(gender) %>% summarise(isnt_many = n() <= 60), .group_vars = "gender"), .remove_obeyers = FALSE ) %>% expose(is_enough_eye_color = . %>% group_by(eye_color) %>% summarise(isnt_many = n() <= 20)) %>% get_exposure() %>% print(n_report = Inf) ## Exposure ## ## Packs info: ## # A tibble: 3 x 4 ## name type fun remove_obeyers ## ## 1 group_pack..1 group_pack TRUE ## 2 group_pack..2 group_pack FALSE ## 3 is_enough_eye_color group_pack TRUE ## ## Tidy data validation report: ## # A tibble: 7 x 5 ## pack rule var id value ## ## 1 group_pack..1 isnt_many Human 0 FALSE ## 2 group_pack..2 isnt_many female 0 TRUE ## 3 group_pack..2 isnt_many hermaphrodite 0 TRUE ## 4 group_pack..2 isnt_many male 0 FALSE ## 5 group_pack..2 isnt_many none 0 TRUE ## 6 group_pack..2 isnt_many NA 0 TRUE ## 7 is_enough_eye_color isnt_many brown 0 FALSE
  • expose() can be applied sequentially which results into updating existing exposure with new information.
  • expose() imputes names of supplied unnamed rule packs based on the present rule packs for the same data unit type.
  • expose() by default removes obeyers (rows with data units that obey respective rules) from validation report. To stop doing that use .remove_obeyers = FALSE during expose() call.
  • expose() by default guesses the type of the supplied rule pack based only on its output. This has some annoying edge cases but is suitable for interactive usage. To turn this feature off use .guess = FALSE as an argument for expose(). Also, to avoid edge cases create rule packs with appropriate wrappers.

Perform some previous checks with one expose().

my_packs <- list(check_data_dims, is_short_droid, cell_isnt_outlier) str(my_packs) ## List of 3 ## $ :List of 1 ## ..$ check_dims:function (value) ## .. ..- attr(*, "class")= chr [1:4] "data_pack" "rule_pack" "fseq" "function" ## $ :List of 1 ## ..$ is_short_droid:function (value) ## .. ..- attr(*, "class")= chr [1:4] "row_pack" "rule_pack" "fseq" "function" ## $ :List of 1 ## ..$ dbl_not_outlier:function (value) ## .. ..- attr(*, "class")= chr [1:4] "cell_pack" "rule_pack" "fseq" "function" starwars_exposed_list <- starwars %>% expose(my_packs) starwars_exposed_arguments <- starwars %>% expose(check_data_dims, is_short_droid, cell_isnt_outlier) identical(starwars_exposed_list, starwars_exposed_arguments) ## [1] TRUE
  • expose() can have for rule pack argument a list of lists [of lists, of lists, …] with functions at any depth. This enables creating a list of rule packs wrapped with *_packs() functions (which all return a list of functions).
  • expose() can have multiple rule packs as separate arguments.
Act after exposure

Throw an error if any non-NA value of mass is more than 1000.

starwars %>% expose( col_packs( low_mass = . %>% summarise_at( vars(mass = "mass"), rules(is_small_mass = all(. <= 1000, na.rm = TRUE)) ) ) ) %>% assert_any_breaker() ## Breakers report ## Tidy data validation report: ## # A tibble: 1 x 5 ## pack rule var id value ## ## 1 low_mass is_small_mass mass 0 FALSE ## Error: assert_any_breaker: Some breakers found in exposure.
  • assert_any_breaker() is used to assert presence of at least one breaker in validation report.

However, offered solution via column pack doesn’t show rows which break the rule. To do that one can use cell pack:

starwars %>% expose( cell_packs( low_mass = . %>% transmute_at( vars(mass = "mass"), rules(is_small_mass = (. <= 1000) | is.na(.)) ) ) ) %>% assert_any_breaker() ## Breakers report ## Tidy data validation report: ## # A tibble: 1 x 5 ## pack rule var id value ## ## 1 low_mass is_small_mass mass 16 FALSE ## Error: assert_any_breaker: Some breakers found in exposure.

Remove numeric columns with mean value below certain threshold. To achieve that one should formulate rule as “column mean should be above threshold”, identify breakers and act upon this information.

remove_bad_cols <- function(.tbl) { bad_cols <- .tbl %>% get_report() %>% pull(var) %>% unique() .tbl[, setdiff(colnames(.tbl), bad_cols)] } starwars %>% expose( col_packs( . %>% summarise_if(is.numeric, rules(mean(., na.rm = TRUE) >= 100)) ) ) %>% act_after_exposure( .trigger = any_breaker, .actor = remove_bad_cols ) %>% remove_exposure() ## # A tibble: 87 x 11 ## name height hair_color skin_color eye_color gender homeworld ## ## 1 Luke Skywalker 172 blond fair blue male Tatooine ## 2 C-3PO 167 gold yellow Tatooine ## 3 R2-D2 96 white, blue red Naboo ## 4 Darth Vader 202 none white yellow male Tatooine ## 5 Leia Organa 150 brown light brown female Alderaan ## # ... with 82 more rows, and 4 more variables: species , ## # films , vehicles , starships
  • act_after_exposure is a wrapper for performing actions after exposing. It takes .trigger function to trigger action and .actor function to perform action and return its result.
  • any_breaker is a function which return TRUE if tidy validation report attached to it has any breaker and FALSE otherwise.
Conclusions
  • Yoda and Jabba the Hutt are outliers among other “Star Wars” characters: Yoda is by height and birth year, Jabba is by mass and also birth year.
  • There are less than 10 “Star Wars” films yet.
  • ruler offers flexible and extendable functionality for common validation tasks. Validation can be done for data [as a whole], group of rows [as a whole], column [as a whole], row [as a whole] and cell. After exposing data frame of interest to rules and obtaining tidy validation report, one can perform any action based on this information: explore report, throw error, impute input data frame, etc.
var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

To leave a comment for the author, please follow the link and comment on their blog: QuestionFlow . R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

AI School: Microsoft R and SQL Server ML Services

Mon, 12/04/2017 - 21:40

(This article was first published on Revolutions, and kindly contributed to R-bloggers)

If you'd like to learn how you use R to develop AI applications, the Microsoft AI School now features a learning path focused on Microsoft R and SQL Server ML Services. This learning path includes eight modules, each comprising detailed tutorials and examples:

All of the Microsoft AI School learning paths are free to access, and the content is hosted on Github (where feedback is welcome!). You can access this course and many others at the link below.

Microsoft AI School: Microsoft R and SQL Server ML Services 

var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

To leave a comment for the author, please follow the link and comment on their blog: Revolutions. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

5 ways a SAS Health Check can simplify a transition to R

Mon, 12/04/2017 - 18:26

(This article was first published on Mango Solutions, and kindly contributed to R-bloggers)

Nic Crane, Data Scientist

At Mango, we’re seeing more and more clients making the decision to modernise their analytics process; moving away from SAS and on to R, Python, and other technologies. There are a variety of reasons for this, including SAS license costs, the increase of recent graduates with R and Python skills, SAS becoming increasingly uncommon, or the need for flexible technologies which have the capability for advanced analytics and quality graphics output.

While such transitions are typically about much more than just technology migration, the code accounts for a significant degree of the complexity. So, in order to support our clients, we have developed a software suite to analyse the existing SAS code and simplify this process.

So how can a SAS Code Health Check help you decide on how to tackle this kind of transformation?

1. Analyse procedure calls to inform technology choice

Using the right technology for the right job is important if we want to create code which is easy to maintain for years, saving us time and resources. But how can we determine the best tool for the job?

A key part of any SAS code analysis involves looking at the procedure calls in the SAS codebase to get a quick view of the key functionality. For example, we can see from the analysis above that this codebase mainly consists of calls to PROC SORT and PROC SQL –SAS procedures which reorder data and execute SQL commands used for interacting with databases or tables of data. As there are no statistics related procs, we may decide —if we migrate this application away from SAS— to move this functionality directly into the database. The second graph shows an application which has a high degree of statistical functionality, using the FORECAST, TIMESERIES, and ARIMA procedures to fit complex predictive time series models. As R has sophisticated time series modelling packages, we might decide to move this application to R.

2. Use macro analysis to find the most and least important components of an application

Looking at the raw source code doesn’t give us any context about what the most important components of our codebase are. How do we know which code is most important and needs to be prioritised? And how can we avoid spending time redeveloping code which has been written, but is never actually used?

We can answer these questions by taking a look at the analysis of the macros and how often they’re used in the code. Macros are like user-defined functions which can combine multiple data steps, proc steps, and logic, and are useful for grouping commands we want to call more than once.

Looking at the plot above, we can see that the transfer_data macro is called 17 times, so we know it’s important to our codebase. When redeveloping the code, we might want to pay extra attention to this macro as it’s crucial to the application’s functionality.

On the other hand, looking at load_other, we can see that it’s never called – this is known as ‘orphaned code’ and is common in large legacy codebases. With this knowledge, we can automatically exclude this to avoid wasting time and resource examining it.

3. Looking at the interrelated components to understand process flow

When redeveloping individual applications, planning the project and allocating resources requires an understanding of how the different components fit together and which parts are more complex than others. How do we gain this understanding without spending hours reading every line of code?

The process flow diagram above allows us to see which scripts are linked to other scripts. Each node represents a script in the codebase, and is scaled by size. The nodes are coloured by complexity. Looking at the diagram above, we can instantly see that the create_metadata script is both large and complex, and so we might choose to assign this to a more experienced developer, or look to restructure it first.

4. Examine code complexity to assess what needs redeveloping and redesigning

Even with organisational best practice guidelines, there can still be discrepancies in the quality and style of code produced when it was first created. How do we know which code is fit for purpose, and which code needs restructuring so we can allocate resources more effectively?

Thankfully, we can use ‘cyclomatic complexity’ which will assess how complex the code is. The results of this analysis will determine: whether it needs to be broken down into smaller chunks, how much testing is needed, and which code needs to be assigned to more experienced developers.

5. Use the high level overview to get an informed perspective which ties into your strategic objectives

Analytics modernisation programs can be large and complex projects, and the focus of a SAS Code Health Check is to allow people to make well-informed decisions by reducing the number of unknowns. So, how do we prioritise our applications in a way that ties into our strategic objectives?

The overall summary can be used to answer questions around the relative size and complexity of multiple applications; making it possible to estimate more accurately on the time and effort required for redevelopment. Custom comparison metrics can be created on the basis of strategic decisions.

For example, if your key priority is to consolidate your ETL process and you might first focus on the apps which have a high number of calls to proc SQL. Or you might have a goal of improving the quality of your graphics and so you’ll focus on the applications which produce a large number of plots. Either way, a high level summary like the one below collects all the information you need in one place and simplifies the decision-making process.

SAS conversion projects tend to be large and complicated, and require deep expertise to ensure their success. A SAS Health Check can help reduce uncertainty, guide your decisions and save you time, resources and, ultimately, money.

If you’re thinking of reducing or completely redeveloping your SAS estate, and want to know more about how Mango Solutions can help, get in touch with with our team today via sales@mango-solutions.com or +44 (0)1249 705 450.

var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

To leave a comment for the author, please follow the link and comment on their blog: Mango Solutions. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

Announcing the Plumber v0.4.4 Release

Mon, 12/04/2017 - 17:11

(This article was first published on Trestle Technology, LLC - R, and kindly contributed to R-bloggers)

Plumber is a package which allows you to create web APIs from your R code. If you’re new to Plumber, you can find out more at www.rplumber.io.

We’re excited to announce the v0.4.4 release of Plumber! This release adds a handful of oft-requested features and cleans up a few issues that came out of the major refactor that took place in the 0.4.2 release. We’ve also continued to expand the official Plumber documentation. We’ll mention the highlights below, but you can see the full release notes for v0.4.4 here. The release is on CRAN now, so you can update using:

install.packages("plumber") Plumber v0.4.4 Highlights
  1. Support customized image sizes on the @png and @jpeg annotations. More details here.
  2. Support expiration, HTTPOnly, and Secure flags on cookies as discussed here (but see the “Known Bugs” section below for an important note about cookie expiration in v0.4.4).
  3. Restore functionality of PlumberStatic routers (#156).
  4. Support arguments sent from clients to nested subrouters.
  5. For APIs deployed using DigitalOcean, set the working directory to the root of the API before starting.
  6. Restore functionality of setErrorHandler.
  7. Ignore capitalization when searching for plumber.r and entrypoint.r files when plumb()ing a directory.
  8. Support query strings with keys that appear more than once
    (#165)
  9. Fix the validation error warning at the bottom of deployed Swagger files
    which would have appeared any time your swagger.json file was hosted in
    such a way that a hosted validator service would not have been able to access
    it. For now we just suppress validation of swagger.json files. (#149)
  10. Support for floating IPs in DNS check that occurs in do_configure_https()
  11. Make adding swap file idempotent in do_provision() so you can now call that function
    on a single droplet multiple times.
  12. Support an exit hook which can define a function that will be
    evaluated when the API is interrupted. e.g.
    pr <- plumb("plumber.R"); pr$registerHook("exit", function(){ print("Bye bye!") })
  13. Fixed bug in which a single function couldn’t support multiple paths for a
    single verb (#203).
Known Bugs

At the time of writing, one bug has already been fixed since the v0.4.4 release. Cookie expiration times were not properly being sent to clients which caused most clients to ignore these times altogether and revert back to using session cookies. If you wish to set an expiration time on a cookie, you will need to use the development release of Plumber which you can install using:

devtools::install_github("trestletech/plumber") var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

To leave a comment for the author, please follow the link and comment on their blog: Trestle Technology, LLC - R. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

Outliers Detection and Intervention Analysis

Mon, 12/04/2017 - 15:00

(This article was first published on R Programming – DataScience+, and kindly contributed to R-bloggers)

In my previous tutorial Arima Models and Intervention Analysis we took advantage of the strucchange package to identify and date time series level shifts structural changes. Based on that, we were able to define ARIMA models with improved AIC metrics. Furthermore, the attentive analysis of the ACF/PACF plots highlighted the presence of seasonal patterns. In this tutorial we will investigate another flavour of intervention variable, the transient change. We will take advantage of two fundamental packages for the purpose:

* tsoutliers * TSA

Specifically, we will compare results obtained by modeling the transient change.

Outliers Analysis

Outliers detection relates with intervention analysis as the latter can be argued as a special case of the former one. A basic list of intervention variable is:

* step response intervention * pulse response intervention

A basic list of outliers is:

* Additive Outliers * Level Shifts * Transient Change * Innovation Outliers * Seasonal Level Shifts

An Additive Outlier (AO) represents an isolated spike.
A Level Shift (LS) represents an abrupt change in the mean level and it may be seasonal (Seasonal Level Shift, SLS) or not.
A Transient Change (TC) represents a spike that takes a few periods to disappear.
An Intervention Outlier (IO) represents a shock in the innovations of the model.

Pre-specified outliers are able to satisfactorily describe the dynamic pattern of untypical effects and can be captured by means of intervention variables.

Intervention Analysis – Common Models

A short introduction of the very basic common models of functions useful for intervention analysis follows.

Step function

The step function is useful to represent level shift outliers.

$$
\begin{equation}
\begin{aligned}
S_{T}(t) &=\left\{
\begin{array}{@{}ll@{}}
0 & \text{if}\ t < T \\
1 & \text{otherwise}\
\end{array} \right.
\end{aligned}
\end{equation}
$$

It can be thought as a special case of the transient change intervention model with delta = 1 (see ahead the transient change model). We can represent it with the help of the filter() function as follows. .

tc <- rep(0, 50) tc[20] <- 1 ls <- filter(tc, filter = 1, method = "recursive") plot(ls, main = "Level Shift - TC delta = 1", type = "s")

By adding up two step functions at different lags, it is possible to represent additive outliers or transitory level shifts, as we will see soon.

Pulse function

The pulse function is useful to represent additive outliers.

$$
\begin{equation}
\begin{aligned}
P_{T}(t) = S_{T}(t)\ -\ S_{T}(t-1)
\end{aligned}
\end{equation}
$$

It can be thought as a special case of the transient change intervention model with delta = 0 (see ahead the transient change model). We can graphically represent it with the help of the filter() function as herein shown.

ao <- filter(tc, filter = 0, method = "recursive") plot(ao, main = "Additive Outlier - TC delta = 0", type = "s")

Level Shift function

The level shift function is useful to represent level shift outliers. It can be modeled in terms of step function with magnitude equal to the omega parameter.

$$
\begin{equation}
\begin{aligned}
m(t) = \omega S_{T}(t)
\end{aligned}
\end{equation}
$$

The graphical representation is the same of the step function with magnitude equal to the omega parameter of the formula above.

Transient change function

The transient change function is useful to represent transient change outliers.

$$
\begin{equation}
\begin{aligned}
\ C(t) = \dfrac{\omega B}{1 – \delta B} P_{T}(t)
\end{aligned}
\end{equation}
$$

We can graphically represent it by the help of the filter() function as herein shown. Two delta values are considered to show how the transient change varies accordingly.

tc_0_4 <- filter(tc, filter = 0.4, method = "recursive") tc_0_8 <- filter(tc, filter = 0.8, method = "recursive") plot(tc_0_4, main = "TC delta = 0.4") plot(tc_0_8, main = "TC delta = 0.8")

Packages suppressPackageStartupMessages(library(tsoutliers)) suppressPackageStartupMessages(library(TSA)) suppressPackageStartupMessages(library(lmtest)) suppressPackageStartupMessages(library(astsa)) Analysis

In the following, I will analyse the sex ratio at birth as based on the Arbuthnot dataset which provides information of male and female births in London from year 1639 to 1710. As done in ref. [1], a metric representing the fractional excess of boys births versus girls is defined as:

$$
\begin{equation}
\begin{aligned}
\dfrac{(Boys – Girls)}{Girls}
\end{aligned}
\end{equation}
$$

url <- "https://www.openintro.org/stat/data/arbuthnot.csv" abhutondot <- read.csv(url, header=TRUE) boys_ts <- ts(abhutondot$boys, frequency=1, start = abhutondot$year[1]) girls_ts <- ts(abhutondot$girls, frequency=1, start = abhutondot$year[1]) delta_ts <- boys_ts - girls_ts excess_ts <- delta_ts/girls_ts plot(excess_ts)

Gives this plot.

With the help of the tso() function within tsoutliers package, we identify if any outliers are present in our excess_ts time series.

outliers_excess_ts <- tso(excess_ts, types = c("TC", "AO", "LS", "IO", "SLS")) outliers_excess_ts Series: excess_ts Regression with ARIMA(0,0,0) errors Coefficients: intercept TC31 0.0665 0.1049 s.e. 0.0031 0.0199 sigma^2 estimated as 0.0007378: log likelihood=180.34 AIC=-354.69 AICc=-354.38 BIC=-347.47 Outliers: type ind time coefhat tstat 1 TC 31 1659 0.1049 5.283

A transient change outlier occurring on year 1659 was identified. We can inspect graphically the results too.

plot(outliers_excess_ts)

Gives this plot.

We found an outlier of Transient Change flavour occurring on year 1659. Specific details are herein shown.

outliers_excess_ts$outliers type ind time coefhat tstat 1 TC 31 1659 0.1049228 5.28339 # time index where the outliers have been detected (outliers_idx <- outliers_excess_ts$outliers$ind) [1] 31 # calendar years where the outliers have been detected outliers_excess_ts$outliers$time [1] 1659

We now want to evaluate the effect of such transient change, comparing the time series under analysis pre and post intervention.

#length of our time series n <- length(excess_ts) # transient change outlier at the same time index as found for our time series mo_tc <- outliers("TC", outliers_idx) # transient change effect data is stored into a one-column matrix, tc tc <- outliers.effects(mo_tc, n) TC31 [1,] 0.000000e+00 [2,] 0.000000e+00 [3,] 0.000000e+00 [4,] 0.000000e+00 [5,] 0.000000e+00 [6,] 0.000000e+00 [7,] 0.000000e+00 [8,] 0.000000e+00 [9,] 0.000000e+00 [10,] 0.000000e+00 ...

The “coefhat” named data frame stores the coefficient used as multiplier for our transient change tc data matrix.

# converting to a number coefhat <- as.numeric(outliers_excess_ts$outliers["coefhat"]) # obtaining the transient change data with same magnitude as determined by the tso() function tc_effect <- coefhat*tc # definining a time series for the transient change data tc_effect_ts <- ts(tc_effect, frequency = frequency(excess_ts), start = start(excess_ts)) # subtracting the transient change intervention to the original time series, obtaining the pre-intervention time series excess_wo_ts <- excess_ts - tc_effect_ts # plot of the original, the pre-intervention and transient change time series plot(cbind(excess_ts, excess_wo_ts, tc_effect_ts))

Gives this plot.

We can further highlight the difference between the original time series and the pre-intervention one.

plot(excess_ts, type ='b', ylab = "excess birth ratio") lines(excess_wo_ts, col = 'red', lty = 3, type ='b')

Gives this plot.

A quick check on the residuals of the pre-intervention time series confirms validity of the ARIMA(0,0,0) model for.

sarima(excess_wo_ts, p=0, d=0, q=0)

Gives this plot.

Now, we implement a similar representation of the transient change outlier by taking advantage of the arimax() function within the TSA package. The arimax() function requires to specify some ARMA parameters, and that is done by capturing the seasonality as discussed in ref. [1]. Further, the transient change is specified by means of xtransf and transfer input parameters. The xtransf parameter is a matrix with each column containing a covariate that affects the time series response in terms of an ARMA filter of order (p,q). For our scenario, it provides a value equal to 1 at the outliers time index and zero at others. The transfer parameter is a list consisting of the ARMA orders for each transfer covariate. For our scenario, we specify an AR order equal to 1.

arimax_model <- arimax(excess_ts, order = c(0,0,0), seasonal = list(order = c(1,0,0), period = 10), xtransf = data.frame(I1 = (1*(seq(excess_ts) == outliers_idx))), transfer = list(c(1,0)), method='ML') summary(arimax_model) Call: arimax(x = excess_ts, order = c(0, 0, 0), seasonal = list(order = c(1, 0, 0), period = 10), method = "ML", xtransf = data.frame(I1 = (1 * (seq(excess_ts) == outliers_idx))), transfer = list(c(1, 0))) Coefficients: sar1 intercept I1-AR1 I1-MA0 0.2373 0.0668 0.7601 0.0794 s.e. 0.1199 0.0039 0.0896 0.0220 sigma^2 estimated as 0.0006825: log likelihood = 182.24, aic = -356.48 Training set error measures: ME RMSE MAE MPE MAPE MASE ACF1 Training set -0.0001754497 0.0261243 0.02163487 -20.98443 42.09192 0.7459687 0.1429339

The significance of the coefficients is then verified.

coeftest(arimax_model) z test of coefficients: Estimate Std. Error z value Pr(>|z|) sar1 0.2372520 0.1199420 1.9781 0.0479224 * intercept 0.0667816 0.0038564 17.3173 < 2.2e-16 *** I1-AR1 0.7600662 0.0895745 8.4853 < 2.2e-16 *** I1-MA0 0.0794284 0.0219683 3.6156 0.0002997 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The model coefficients are all statistically significative. We remark that the resulting model shows a slight improved AIC result with respect the previous model. Further, both models show improved AIC values with respect previous tutorial discussed ARIMA models.

A quick check on the residuals of the pre-intervention time series confirms validity of the ARIMA(0,0,0)(1,0,0)[10] model for.

sarima(excess_wo_arimax_ts, p=0, d=0, q=0, P=1, D=0, Q=0, S=10)

Gives this plot.

Let us plot the original time series against the fitted one.

plot(excess_ts) lines(fitted(arimax_model), col = 'blue')

Gives this plot.

Considering the transient change model formula, we can elaborate a linear filter with the AR parameter as coefficient and the MA parameter to multiply the filter() function result.

# pulse intervention variable int_var <- 1*(seq(excess_ts) == outliers_idx) # transient change intervention variable obtained by filtering the pulse according to the # definition of transient change and parameters obtained by the ARIMAX model tc_effect_arimax <- filter(int_var, filter = coef(arimax_model)["I1-AR1"], method = "rec", sides = 1) * coef(arimax_model)["I1-MA0"] # defining the time series for the intervention effect tc_effect_arimax_ts <- ts(tc_effect_arimax, frequency = frequency(excess_ts), start = start(excess_ts))

It is interesting to compare two transient change effects, as obtained by the arimax() and the tso() functions.

# comparing transient change effect resulting by ARIMAX (red) with the tso() one (blue) plot(tc_effect_arimax_ts, col ='red', type='l', ylab = "transient change") lines(tc_effect_ts, col ='blue', lty = 3)

By eyeballing the plot above, they appear pretty close.

If you have any questions, please feel free to comment below.

References

    Related Post

    1. Spark DataFrames: Exploring Chicago Crimes
    2. Image Processing and Manipulation with magick in R
    3. Analyzing the Bible and the Quran using Spark
    4. Predict Customer Churn – Logistic Regression, Decision Tree and Random Forest
    5. Find Your Best Customers with Customer Segmentation in Python
    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: R Programming – DataScience+. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    RTutor: Water Pollution and Cancer

    Mon, 12/04/2017 - 10:00

    (This article was first published on Economics and R - R posts, and kindly contributed to R-bloggers)

    One very important benefit of stronger environmental protection is to reduce the damaging effects of pollution on human health.

    In his very interesting article “The Consequences of Industrialization: Evidence from Water Pollution and Digestive Cancers in China” (Review of Economics and Statistics, 2012) Avraham Ebenstein studies the impact of water pollution on the rate of digestive cancers for several Chinese river systems. He convincingly argues that there is a causal effect of substantial size and a cost-benefit analysis shows how stricter environmental regulations would allow to statistically save a human life at relatively low cost.

    As part of her Master Thesis at Ulm University, Brigitte Peter has generated a very nice RTutor problem set that allows you to replicate the main insights of the article in an interactive fashion. You learn about R, econometrics and the identification of causal effects from field data, as well as the relationship between water pollution and digestive cancer.

    Like in previous RTutor problem sets, you can enter free R code in a web based shiny app. The code will be automatically checked and you can get hints how to proceed. In addition you are challenged by many multiple choice quizzes.

    To install the problem set the problem set locally, first install RTutor as explained here:

    https://github.com/skranz/RTutor

    and then install the problem set package:

    https://github.com/brigittepeter/RTutorWaterPollutionChina

    There is also an online version hosted by shinyapps.io that allows you explore the problem set without any local installation. (The online version is capped at 25 hours total usage time per month. So it may be greyed out when you click at it.)

    https://brigittepeter.shinyapps.io/RTutorWaterPollutionChina/

    If you want to learn more about RTutor, to try out other problem sets, or to create a problem set yourself, take a look at the RTutor Github page

    https://github.com/skranz/RTutor

    You can also install RTutor as a docker container:
    https://hub.docker.com/r/skranz/rtutor/

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: Economics and R - R posts. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    How to Show R Inline Code Blocks in R Markdown

    Mon, 12/04/2017 - 01:00

    (This article was first published on R Views, and kindly contributed to R-bloggers)

    Inline code with R Markdown

    R Markdown is a well-known tool for reproducible science in R. In this article, I will focus on a few tricks with R inline code.

    Some time ago, I was writing a vignette for my package WordR. I was using R Markdown. At one point I wanted to show `r expression` in the output, exactly as it is shown here, as an inline code block.

    In both R Markdown and Markdown, we can write `abc` to show abc (I will use the blue colour for code blocks showing code as it appears in Rmd file, whereas the default colour will be showing the rendered output). What is not obvious is that you can use double backticks to escape single backticks in the code block. So code like this: `` `abc` `` (mind the spaces!) produces this `abc`.

    Now as an exercise, you can guess how I produced the `` `abc` `` block above. Yes, indeed, I have ``` `` `abc` `` ``` in the Rmd source file. And we can go on like this ad infinitum (can we?).

    OK, but I wanted to produce `r expression`. Learning the lesson above, we can try `` `r expression` ``. But trying this, I was getting an error:

    processing file: codeBlocks.Rmd Quitting from lines 12-22 (codeBlocks.Rmd) Error in vapply(x, format_sci_one, character(1L), ..., USE.NAMES = FALSE) : values must be length 1, but FUN(X[[1]]) result is length 0 Calls: ... paste -> hook -> .inline.hook -> format_sci -> vapply Execution halted

    Obviously, the R Markdown renderer is trying to evaluate the expression. So it seems that R Markdown renderer does not know that it should (should it?) skip R inline code blocks which are enclosed by double backticks.

    Solution

    Making a long (and yes, I spent some time to find a solution) story short. The correct code block to produce `r expression` is `` `r "\u0060r expression\u0060"` ``.

    Short explanation how it works: \\u0060 is an Unicode representation of the backtick (`). So first, the R Markdown renderer finds the R expression within the double backticks and it evaluates it. Important here is the usage of the Unicode for backtick, since using backtick within the expression would result in an error. (We are lucky, that the R Markdown renderer is not running recursively, finding again the R code block and evaluating it again.) So once the R Markdown is done, the Markdown is just seeing `` `r expression` `` in the temporary .md file, and it evaluates it correctly to `r expression` in the HTML output.

    If you want to see (much) more, just look at the source R Markdown file for this article here. Do you know a better, more elegant solution? If you do, please use the discussion below.

    Epilogue

    Some time after I sent the draft of this blog to the RViews admin, I got a reply (thank you!) which pointed to the knitr FAQ page, specifically question number 7 (and a new post from author of knitr package explaining it a little further). It suggests probably more elegant solution of using

    Some text before inline code `` `r expression` `` and some code after

    (mind the newline!) that will produce Some text before inline code `r expression` and some text after or use `` `r knitr::inline_expr("expression")` `` which produces similarly `r expression`.

    But, I believe this post (especially its source) might still help someone to understand how the R inline code is evaluated.

    _____='https://rviews.rstudio.com/2017/12/04/how-to-show-r-inline-code-blocks-in-r-markdown/';

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: R Views. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    When you use inverse probability weighting for estimation, what are the weights actually doing?

    Mon, 12/04/2017 - 01:00

    (This article was first published on ouR data generation, and kindly contributed to R-bloggers)

    Towards the end of Part 1 of this short series on confounding, IPW, and (hopefully) marginal structural models, I talked a little bit about the fact that inverse probability weighting (IPW) can provide unbiased estimates of marginal causal effects in the context of confounding just as more traditional regression models like OLS can. I used an example based on a normally distributed outcome. Now, that example wasn’t super interesting, because in the case of a linear model with homogeneous treatment effects (i.e. no interaction), the marginal causal effect is the same as the conditional effect (that is, conditional on the confounders.) There was no real reason to use IPW in that example – I just wanted to illustrate that the estimates looked reasonable.

    But in many cases, the conditional effect is different from the marginal effect. (And in other cases, there may not even be an obvious way to estimate the conditional effect – that will be the topic for the last post in this series). When the outcome is binary, the notion that conditional effects are equal to marginal effects is no longer the case. (I’ve touched on this before.) What this means, is that we can recover the true conditional effects using logistic regression, but we cannot estimate the marginal effect. This is directly related to the fact that logistic regression is linear on the logit (or log-odds) scale, not on the probability scale. The issue here is collapsibility, or rather, non-collapsibility.

    A simulation

    Because binary outcomes are less amenable to visual illustration, I am going to stick with model estimation to see how this plays out:

    library(simstudy) # define the data defB <- defData(varname = "L", formula =0.27, dist = "binary") defB <- defData(defB, varname = "Y0", formula = "-2.5 + 1.75*L", dist = "binary", link = "logit") defB <- defData(defB, varname = "Y1", formula = "-1.5 + 1.75*L", dist = "binary", link = "logit") defB <- defData(defB, varname = "A", formula = "0.315 + 0.352 * L", dist = "binary") defB <- defData(defB, varname = "Y", formula = "Y0 + A * (Y1 - Y0)", dist = "nonrandom") # generate the data set.seed(2002) dtB <- genData(200000, defB) dtB[1:6] ## id L Y0 Y1 A Y ## 1: 1 0 0 0 0 0 ## 2: 2 0 0 0 0 0 ## 3: 3 1 0 1 1 1 ## 4: 4 0 1 1 1 1 ## 5: 5 1 0 0 1 0 ## 6: 6 1 0 0 0 0

    We can look directly at the potential outcomes to see the true causal effect, measured as a log odds ratio (LOR):

    odds <- function (p) { return((p/(1 - p))) } # log odds ratio for entire sample (marginal LOR) dtB[, log( odds( mean(Y1) ) / odds( mean(Y0) ) )] ## [1] 0.8651611

    In the linear regression context, the conditional effect measured using observed data from the exposed and unexposed subgroups was in fact a good estimate of the marginal effect in the population. Not the case here, as the conditional causal effect (LOR) of A is 1.0, which is greater than the true marginal effect of 0.86:

    library(broom) tidy(glm(Y ~ A + L , data = dtB, family="binomial")) ## term estimate std.error statistic p.value ## 1 (Intercept) -2.4895846 0.01053398 -236.33836 0 ## 2 A 0.9947154 0.01268904 78.39167 0 ## 3 L 1.7411358 0.01249180 139.38225 0

    This regression estimate for the coefficient of \(A\) is a good estimate of the conditional effect in the population (based on the potential outcomes at each level of \(L\)):

    dtB[, .(LOR = log( odds( mean(Y1) ) / odds( mean(Y0) ) ) ), keyby = L] ## L LOR ## 1: 0 0.9842565 ## 2: 1 0.9865561

    Of course, ignoring the confounder \(L\) is not very useful if we are interested in recovering the marginal effect. The estimate of 1.4 is biased for both the conditional effect and the marginal effect – it is not really useful for anything:

    tidy(glm(Y ~ A , data = dtB, family="binomial")) ## term estimate std.error statistic p.value ## 1 (Intercept) -2.049994 0.009164085 -223.6987 0 ## 2 A 1.433094 0.011723767 122.2384 0 How weighting reshapes the data …

    Here is a simple tree graph that shows the potential outcomes for 1000 individuals (based on the same distributions we’ve been using in our simulation). For 27% of the individuals, \(L=1\), for 73% \(L=0\). Each individual has a potential outcome under each level of treatment \(A\). So, that is why there are 730 individuals with \(L=0\) who are both with and without treatment. Likewise each treatment arm for those with \(L=0\) has 270 individuals. We are not double counting.

    Both the marginal and conditional estimates that we estimated before using the simulated data can be calculated directly using information from this tree. The conditional effects on the log-odds scale can be calculated as …

    \[LOR_{A=1 \textbf{ vs } A=0|L = 0} = log \left (\frac{0.182/0.818}{0.076/0.924} \right)=log(2.705) = 0.995\]

    and

    \[LOR_{A=1 \textbf{ vs } A=0|L = 1} = log \left (\frac{0.562/0.438}{0.324/0.676} \right)=log(2.677) = 0.984\]

    The marginal effect on the log odds scale is estimated marginal probabilities: \(P(Y=1|A=0)\) and \(P(Y=1|A=1)\). Again, we can take this right from the tree …

    \[P(Y=1|A=0) = 0.73\times0.076 + 0.27\times0.324 = 0.143\] and

    \[P(Y=1|A=1) = 0.73\times0.182 + 0.27\times0.562 = 0.285\]

    Based on these average outcomes (probabilities) by exposure, the marginal log-odds for the sample is:

    \[LOR_{A=1 \textbf{ vs } A=0} = log \left (\frac{0.285/0.715}{0.143/0.857} \right)=log(2.389) = 0.871\]

    Back in the real world of observed data, this is what the tree diagram looks like:

    This tree tells us that the probability of exposure \(A=1\) is different depending upon that value of \(L\). For \(L=1\), \(P(A=1) = 230/730 = 0.315\) and for \(L=0\), \(P(A=1) = 180/270 = 0.667\). Because of this disparity, the crude estimate of the effect (ignoring \(L\)) is biased for the marginal causal effect:

    \[P(Y=1|A=0) = \frac{500\times0.076 + 90\times0.324}{500+90}=0.114\]

    and

    \[P(Y=1|A=1) = \frac{230\times0.182 + 180\times0.562}{230+180}=0.349\]

    The crude log odds ratio is

    \[LOR_{A=1 \textbf{ vs } A=0} = log \left (\frac{0.349/0.651}{0.114/0.886} \right)=log(4.170) = 1.420\]

    As mentioned in the prior post, the IPW is based on the probability of the actual exposure at each level of \(L\): \(P(A=a | L)\), where \(a\in(0,1)\) (and not on \(P(A=1|L)\), the propensity score). Here are the simple weights for each group:

    If we apply the weights to each of the respective groups, you can see that the number of individuals in each treatment arm is adjusted to the total number of individuals in the sub-group defined the level of \(L\). For example, if we apply the weight of 3.17 (730/230) to each person observed with \(L=0\) and \(A=1\), we end up with \(230\times3.17=730\). Applying each of the respective weights to the subgroups of \(L\) and \(A\) results in a new sample of individuals that looks exactly like the one we started out with in the potential outcomes world:

    This all works only if we make these two assumptions: \[P(Y=1|A=0, L=l) = P(Y_0=1 | A=1, L=l)\] and \[P(Y=1|A=1, L=l) = P(Y_1=1 | A=0, L=l)\]

    That is, we can make this claim only under the assumption of no unmeasured confounding. (This was discussed in the Part 1 post.)

    Applying IPW to our data

    We need to estimate the weights using logistic regression (though other, more flexible methods, can also be used). First, we estimate \(P(A=1|L)\) …

    exposureModel <- glm(A ~ L, data = dtB, family = "binomial") dtB[, pA := predict(exposureModel, type = "response")]

    Now we can derive an estimate for \(P(A=a|L=l)\) and get the weight itself…

    # Define two new columns defB2 <- defDataAdd(varname = "pA_actual", formula = "(A * pA) + ((1 - A) * (1 - pA))", dist = "nonrandom") defB2 <- defDataAdd(defB2, varname = "IPW", formula = "1/pA_actual", dist = "nonrandom") # Add weights dtB <- addColumns(defB2, dtB) dtB[1:6] ## id L Y0 Y1 A Y pA pA_actual IPW ## 1: 1 0 0 0 0 0 0.3146009 0.6853991 1.459004 ## 2: 2 0 0 0 0 0 0.3146009 0.6853991 1.459004 ## 3: 3 1 0 1 1 1 0.6682351 0.6682351 1.496479 ## 4: 4 0 1 1 1 1 0.3146009 0.3146009 3.178631 ## 5: 5 1 0 0 1 0 0.6682351 0.6682351 1.496479 ## 6: 6 1 0 0 0 0 0.6682351 0.3317649 3.014183

    To estimate the marginal effect on the log-odds scale, we use the function glm with weights specified by IPW. The true value of marginal effect (based on the population-wide potential outcomes) was 0.87 (as we estimated from the potential outcomes directly and from the tree graph). Our estimate here is spot on (but with such a large sample size, this is not so surprising):

    tidy(glm(Y ~ A , data = dtB, family="binomial", weights = IPW)) ## term estimate std.error statistic p.value ## 1 (Intercept) -1.7879512 0.006381189 -280.1909 0 ## 2 A 0.8743154 0.008074115 108.2862 0

    It may not seem like a big deal to be able to estimate the marginal effect – we may actually not be interested in it. However, in the next post, I will touch on the issue of estimating causal effects when there are repeated exposures (for example, administering a drug over time) and time dependent confounders that are both affected by prior exposures and affect future exposures and affect the outcome. Under this scenario, it is very difficult if not impossible to control for these confounders – the best we might be able to do is estimate a marginal, population-wide causal effect. That is where weighting will be really useful.

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: ouR data generation. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    Naming things is hard

    Sun, 12/03/2017 - 23:00

    Prefixing R function names –

    ‘There are only two hard things in Computer Science: cache invalidation and naming things.’

    The above quip by Phil Karlton is fairly well known and often quoted, sometimes with amusing extensions:

    There are two hard things in computer science: cache invalidation, naming things, and off-by-one errors.

    — Jeff Atwood (@codinghorror) August 31, 2014

    There are only 2 hard things in computer science:
    0. Cache invalidation
    1. Naming things
    7. Asynchronous callbacks
    2. Off-by-one errors

    — Paweł Zajączkowski (@gvaireth) September 18, 2017

    These are funny, but they do also convey some truth: in the midst of all the technicalities and abstractions we can find ourselves caught up with in the world of programming, it’s surprising how often seemingly ‘simple’ things like naming things trip us up.

    I was recently reminded of this when a difference of opinions about function names sparked some healthy debate in a pull request I was reviewing for one of my personal projects.

    So the question I want to raise is this:

    “When (if ever) is it a good idea to adopt a prefixing convention for the names of exported functions in an R package?”

    Disclaimers

    Before I dive into the details I feel it is important to state a few things upfront.

    Firstly, I want to thank my friends and collaborators Katrin and Lorenz who are strong proponents of open source software and for whom I have a lot of respect. On this occasion they both seem to disagree with me, but that is not a bad thing – discussion and debate is valuable, and that’s not gonna happen when everyone agrees with each other all the time. I did also ask for their permission before publishing this post.

    Secondly, my purpose in writing about this is less about trying to determine who is right, and more about attempting to convert this experience into insight. Often we learn more from our failures than from our successes, but it’s harder to share our mistakes than it is to share our triumphs. So this post is my way of being vulnerable about something that is a work in progress and the process of trying to improve on it. As an aside, if you haven’t encountered survivorship bias before, I highly recommend you read this.

    Thirdly, I was wrong. This is especially important in light of the previous point. I was wrong to raise the issue of function names (for the package as a whole) in a pull request which was focused on something else. This is a valuable lesson. One should always aim to keep pull requests (and issues) narrow in scope because attempting to tackle multiple problems in one place (unless they are inherently linked or dependent on each other) is messy and complicates matters unnecessarily.

    Lastly, what I share will be my own opinion, but it is just an opinion and I’m always open to learning from others with different views. My hope is that collectively we can share some worthwhile perspectives from both sides and possibly encourage more thinking and conversation around this or related issues.

    Background Context

    Ok, so having made those upfront disclaimers, I’ll begin by summarizing the back-story and context in which the discussion arose. If you’d like to refer to the pull request itself – it can be found here.

    excercism.io is a learning platform that aims to provide code practice and mentorship for everyone. I got involved in developing the R track on Exercism and wrote about it earlier this year. Unlike most online learning platforms, with Exercism, all the coding happens on your machine in an environment you’re familiar with. So Exercism provides a command line tool which leverages an API in order to facilitate the process of fetching and submitting exercises.

    A few months ago, I had an idea to write an R package which wraps this API. The thinking was that the user experience (for R users) might be improved upon by facilitating interaction with exercism.io directly from R itself. This removes the need for switching repeatedly between R and a shell when fetching, iterating on and submitting exercises – although now the addition of terminal tabs in RStudio 1.1 has already reduced this friction to a degree. In any case, there are additional opportunities for Exercism helper functions in the package which can be context aware and integrate with the RStudio if it is being used. An example this could be functions (or addins) which make use of the rstudioapi to detect which problem was last worked on when submitting so that it doesn’t need to be specified manually.

    Katrin, who is a co-maintainer for the R track on exercism.io, has also been collaborating on this R package with me and has had some great ideas like leveraging testthat’s auto_test() to facilitate and encourage test driven development, as this is one of the implicit goals of Exercism. In the PR introducing this feature, the potential for function name confusion was soon evident when this new Exercism specific version of testthat::auto_test() was (initially) given the name autotest(). This reminded me that I’d in fact been thinking for a while about renaming all the exported functions to adopt the prefixing convention ex_* (for a few different reasons which I’ll get to later). So I figured this “name clash” was as good a catalyst as any, and made the suggestion to start adopting the new naming convention in the PR. Once again it’s worth noting that this was a mistake – I should have instead opened a separate issue to discuss my proposed change in naming conventions.

    Discussion & follow-up

    The suggestion was met with some resistance, and after some further discussion it became clear to me that it was a thoughtfully considered resistance. So I asked my friend Lorenz to weigh in on the discussion too, given that he knows Katrin and I but is not involved in the project and thus has the benefit of a more neutral perspective. To my surprise, he did not agree with me either!

    But I did still seem to have Jenny Bryan on my side (thanks Jenny!), and I figured Hadley (or Sir Lord General Professor Wickham as Mara generally likes to refer to him) had to have thought it was a good idea at some point given the str_ prefix for stringr and fct_ prefix for forcats among others. So after thinking on the problem for a while, out of curiousity I eventually tweeted out a poll to see if I could get any sense of where the #rstats community falls on this issue.

    What is your take on prefixing conventions for #rstats function names? (e.g. stringr/stringi, forcats, googlesheets)

    — Jon Calder (@jonmcalder) October 20, 2017

    At a glance it looks like a reasonable proportion are actually in favour of prefixing conventions for function names (or at least not against the idea), but of course there are a number of disclaimers to make here:

    • Character limits (at the time of the poll) made it hard to communicate the question clearly or to include any additional context for the question, so that probably leaves a lot of room for interpretation
    • I don’t have much reach on Twitter, so there weren’t many responses (81 votes is not much to go on)
    • Even if there had been a good number of responses, Twitter polls need to be looked at skeptically given the potential for sampling bias
    • Speaking of sampling bias, most of the votes came in after Hadley tweeted a reply to the poll so it makes sense that the results would be skewed towards his legions of followers (I’m one of them and the degree of influence is clear because his packages are what got me considering prefixing conventions in the first place, among others like googlesheets)

    Maëlle had two helpful follow-ups for me. Firstly, she encouraged me to blog about this (and I don’t think I would have done so otherwise so thanks Maëlle!). Secondly, she directed me to the ROpenSci review process for her package ropenaq, which provides access to air quality data via the OpenAQ API. In his review of the package, Andrew MacDonald suggested the following:

    “I was thinking that the names of functions might be a bit similar to functions in other packages that also use geography. What do you think of prefixing every function with a package-specific string? Perhaps something like aq_ before all the user-facing functions (i.e. countries() becomes aq_countries()). This is similar to another rOpenSci package, geonames, which uses GN (as in GNcities()). This has the added benefit of playing very nicely with Rstudio, which will show all the package functions as completions when users type aq_ and hit tab.”

    Interestingly, this suggestion (although the original inspiration may have come from elsewhere) was later incorporated into ROpenSci’s packaging guide:

    Consider an object_verb() naming scheme for functions in your package that take a common data type or interact with a common API. object refers to the data/API and verb the primary action. This scheme helps avoid namespace conflicts with packages that may have similar verbs, and makes code readable and easy to auto-complete. For instance, in stringi, functions starting with stri_ manipulate strings (stri_join(), stri_sort(), and in googlesheets functions starting with gs_ are calls to the Google Sheets API (gs_auth(), gs_user(), gs_download()).

    Though I hadn’t seen this recommendation from ROpenSci at the time, it aligns very strongly with my initial reasoning for wanting to change the function names in the exercism package. It is primarily an API package, and all functions either interact with the exercism.io API or act on some (local) Exercism data/code (exercises). A potential objection could be that in some cases the ex_* prefix may be interpreted either as exercism_* or as exercise_*, but I don’t think that’s a problem since either way the context is common and shared implicitly.

    Having said that, I’m also aware that a prefixing convention is not suitable in the majority of cases and there are reasons to avoid it, otherwise it would already be far more common. I’ve not tried to summarize the arguments for and against it here since this post is already quite lengthy, but I believe Katrin and Lorenz both raised a number of good points over in the original PR thread, so I would encourage you to read through that to get some more insight into the potential pros and cons.

    Below is an overview of the currently exported functions for exercism, along with a brief
    description of what they do and potential new names for each should we adopt a prefixing convention:

    Current Function Description New Name? set_api_key() Set an environment variable for the provided exercism.io API key, and store in .Renviron so that it can persist for future sessions. ex_set_key() set_exercism_path() Set an environment variable for the provided exercism path, and store in .Renviron so that it can persist for future sessions. ex_set_path() track_status() Fetches current track status from exercism.io ex_status() check_next_problem() Returns the next problem for a language track ex_check() fetch_problem() Fetches the files for a problem via the Exercism API and writes them into a new problem folder in the Exercism directory ex_fetch() fetch_next() Checks for the next problem via the Exercism API, and writes the files into the folder in the Exercism directory *special case of ex_fetch() open_exercise() Open files for an exercism.io problem ex_open() start_testing() Exercism- and R-specific wrapper for testthat::auto_test() that starts testing your solution against the problem’s test cases. ex_auto_test() submit() Submits the specified solution to exercism.io ex_submit() skip_problem() Marks a problem as ‘skipped’ via the Exercism API ex_skip() browse_exercise() Navigate to an exercise description on exercism.io ex_browse() browse_solution() Navigate to an exercise solution on exercism.io *special case of ex_browse()

    So looking at the above, do you think this a good use case for an object_verb() naming convention? How should one determine this? Please feel free to comment with your thoughts and suggestions below or ping me on Twitter.

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    Explain! Explain! Explain!

    Sun, 12/03/2017 - 08:00

    (This article was first published on SmarterPoland.pl » English, and kindly contributed to R-bloggers)


    Predictive modeling is fun. With random forest, xgboost, lightgbm and other elastic models…
    Problems start when someone is asking how predictions are calculated.
    Well, some black boxes are hard to explain.
    And this is why we need good explainers.

    In the June Aleksandra Paluszynska defended her master thesis Structure mining and knowledge extraction from random forest. Find the corresponding package randomForestExplainer and its vignette here.

    In the September David Foster published a very interesting package xgboostExplainer. Try it to extract useful information from a xgboost model and create waterfall plots that explain variable contributions in predictions. Read more about this package here.

    In the October Albert Cheng published lightgbmExplainer. Package with waterfall plots implemented for lightGBM models. Its usage is very similar to the xgboostExplainer package.

    Waterfall plots that explain single predictions are great. They are useful also for linear models. So if you are working with lm() or glm() try the brand new breakDown package (hmm, maybe it should be named glmExplainer). It creates graphical explanations for predictions and has such a nice cheatsheet:

    Install the package from https://pbiecek.github.io/breakDown/.

    Thanks to RStudio for the cheatsheet’s template.

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: SmarterPoland.pl » English. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    A Tidytext Analysis of the Weinstein Effect

    Sun, 12/03/2017 - 01:00

    (This article was first published on Computational Social Science, and kindly contributed to R-bloggers)

    Quantifying He-Said, She-Said: Newspaper Reporting

    I have been meaning to get into quantitative text analysis for a while. I initially planned this post to feature a different package (that I wanted to showcase), however I ran into some problems with their .json parsing methods and currently waiting for the issue to be solved on their end. The great thing about doing data science with R is that there are multiple avenues leading you to the same destination, so let’s take advantage of that.

    My initial inspiration came from David Robinson’s post on gendered verbs. I remember sending it around and thinking it was quite cool. Turns out he was building on Julia Silge’s earlier post on gender pronouns. I see that post and I go, ‘what a gorgeous looking ggplot theme!’. So. Neat. Praise be the open source gods, the code is on GitHub. Let’s take advantage of that too.

    I still needed a topic, and even though both the Wikipedia plots and the Jane Austen datasets sound interesting to look at, I felt that there is another, obvious choice. It has a Wikipedia page and its own subreddit. Also, the title might have given it away. Let’s get to work.

    Getting Full Text News Articles

    My first instinct was to check out the NYT APIs—it made sense, given that they broke the news (along with the New Yorker). Everything seemed to be working out just fine, until I realised you cannot get the full text—only the lead. Staying true to my strict data scientist training, I googled ‘full text newspaper api r’ and there it was: GuardianR. Sorry NYC mates, we reckon we will have to cross the pond for this one.

    Note that any one source will always be biased. If you are not familiar with the Guardian, it’s British and has a left-centre bias. It might be prudent to pair it with a right-centre newspaper, however not all newspapers provide APIs (which in itself is another selection bias). Alas, we will move on just with the Guardian—insert idiom regarding salt. Finally, you will need to get a free API key from their open source platform. You still have to register, but you are only in danger if you vote Tory and stand on the left side of the escalator. Once you got it, install/load the package via CRAN:

    library(GuardianR) ls(pos = "package:GuardianR") ## [1] "get_guardian" "get_json" "parse_json_to_df"

    As you can see, the GuardianR package is a simple one: it contains only three (but powerful) functions. We only need the first one to get a hold of the full text articles, and the syntax is super simple:

    #not evaluated articles <- get_guardian(keywords = "sexual+harassment", section = "world", from.date = "2012-11-30", to.date = "2017-11-30", api.key = "your-key-here")

    Running the above chunk with your own key will get you all articles published in the Guardian in the last five years tagged under the news section ‘world’ and containing the keywords ‘sexual harassment’ in the Guardian API. The keywords can be as simple or complicated as you want; just add more terms using the plus sign.

    You might think the time frame is a bit skewed towards the ‘pre’ era—the news broke out on October 5, 2017. Going all the way back five full years, we are comparing 58 months worth of ‘pre’ to only 2 months of ‘post’ Weinstein. However, luckily for you blog posts are not written in real-time, meaning you get to see a (somewhat working) final result so just bear with me. And no, this is not at all like scientists running 514 regressions and failing to mention this tidbit in their publication. Relevant xkcd.

    No, the reason is pure pragmatism. It’s not that running the code ‘live’ and getting the articles ‘real-time’ would not slow down this page—it’s not how it works. However, it is good practice to extract a tad bigger chunk than you think you will need, as you can always slice it up later to suit your needs better.

    In any case, I am working with downloaded data so I will just load it up. Feel free to subset the data to see whether the results change if you use a different cut-off point. Also, if you go back the same amount of time (i.e. two months before October 5), that would lead to 183 articles for pre and 121 articles for the post time period—it is a reckoning, alright. Going back five years gets us 1224 articles in total; so we actually have 1103-pre and 121-post articles (89% to 11%). That’s more or less cross-validation ratio (well, a bit on the less side maybe), and we will roll with that for now.

    articles <- read.csv("articles.csv", stringsAsFactors = FALSE) dim(articles) ## [1] 1224 27 sum(articles$wordcount) ## [1] 1352717 colnames(articles) ## [1] "id" "sectionId" "sectionName" ## [4] "webPublicationDate" "webTitle" "webUrl" ## [7] "apiUrl" "newspaperPageNumber" "trailText" ## [10] "headline" "showInRelatedContent" "lastModified" ## [13] "hasStoryPackage" "score" "standfirst" ## [16] "shortUrl" "wordcount" "commentable" ## [19] "allowUgc" "isPremoderated" "byline" ## [22] "publication" "newspaperEditionDate" "shouldHideAdverts" ## [25] "liveBloggingNow" "commentCloseDate" "body"

    We get a bunch of variables (27) with that call, but we won’t be needing most of them for our analysis:

    #laziest subset for only two variables want.var <- c("webPublicationDate", "body") want <- which(colnames(articles) %in% want.var) articles <- articles[, want] articles$webPublicationDate <- as.Date.factor(articles$webPublicationDate)

    The body contains the full-text, however it’s in HTML:

    dplyr::glimpse(articles$body[1]) ## chr "

    Numerous women have accused Don Burke of indecent assault, sexual harassment and bullying during the 1980s a"| __truncated__

    At this point, I must admit I resorted to hacking a bit. I’m sure there is a more elegant solution here. I’ll go with this SO answer to extract text from HTML. Basically, the cleaning function removes the HTML using regex. Unfortunately, this does not clear up various apostrophes found in the text. For that, we switch the encoding from ASCII to byte:

    articles$body <- iconv(articles$body, "", "ASCII", "byte") cleanFun <- function(htmlString) { return(gsub("<.*?>", "", htmlString)) } articles$body <- cleanFun(articles$body) dplyr::glimpse(articles$body[1]) ## chr "Numerous women have accused Don Burke of indecent assault, sexual harassment and bullying during the 1980s and "| __truncated__

    This will end up cutting some legitimate apostrophes (e.g. “hasn’t”, “didn’t” to “hasn”, “didn”) in some cases, but we will fix that later on.

    Let’s split the data on date October 5, 2017 and get rid of the date column afterwards:

    #You can also use negative index for subsetting articles.before <- articles[articles$webPublicationDate < "2017-10-05", ] articles.after <- articles[articles$webPublicationDate >= "2017-10-05", ] full.text.before <- articles.before[, 2] full.text.before <- as.data.frame(full.text.before) full.text.after <- articles.after[, 2] full.text.after <- as.data.frame(full.text.after) N-Grams and Combinatorics

    To me, n-grams are what prisoner’s dilemma to college freshman—that ‘wow, so simple but so cool’ moment. As in, simple after the fact when someone has already figured it out and explained it to you. N-grams are essentially combinations of n words. For example, a bigram (2-gram). Using the tidytext package developed by David and Julia, we can create them in a flash with unnest_tokens. After that, we will separate the bigrams into two distinct words. Next, we will subset the bigrams so that the first word is either he or she. Finally, we will transform the words into frequency counts. I’m heavily recycling their code—no need to reinvent the wheel:

    library(tidytext) library(tidyverse) #or just dplyr and tidyr if you are allergic #Create bigrams bigrams.before <- full.text.before %>% unnest_tokens(bigram, full.text.before, token = "ngrams", n = 2) nrow(bigrams.before) ## [1] 1311051 head(bigrams.before) ## bigram ## 1 the walk ## 1.1 walk from ## 1.2 from the ## 1.3 the gare ## 1.4 gare du ## 1.5 du nord #Separate bigrams into two words bigrams.separated.before <- bigrams.before %>% separate(bigram, c("word1", "word2"), sep = " ") head(bigrams.separated.before) ## word1 word2 ## 1 the walk ## 1.1 walk from ## 1.2 from the ## 1.3 the gare ## 1.4 gare du ## 1.5 du nord #Subset he and she in word1 he.she.words.before <- bigrams.separated.before %>% filter(word1 %in% c("he", "she")) #Fix the missing t's after apostrophe fix.apos <- c("hasn", "hadn", "doesn", "didn", "isn", "wasn", "couldn", "wouldn") he.she.words.before <- he.she.words.before %>% mutate(word2 = ifelse(word2 %in% fix.apos, paste0(word2, "t"), word2)) #10 random samples; the numbers are row numbers not counts set.seed(1895) dplyr::sample_n(he.she.words.before, 10) ## word1 word2 ## 4403 she doesnt ## 3732 he was ## 5222 she wasnt ## 11862 she said ## 3972 she wrote ## 3189 he says ## 3952 she sees ## 4878 he was ## 9314 he went ## 9408 she noted #Transform words into counts, add +1 for log transformation he.she.counts.before <- he.she.words.before %>% count(word1, word2) %>% spread(word1, n, fill = 0) %>% mutate(total = he + she, he = (he + 1) / sum(he + 1), she = (she + 1) / sum(she + 1), log.ratio = log2(she / he), abs.ratio = abs(log.ratio)) %>% arrange(desc(log.ratio)) #Top 5 words after she head(he.she.counts.before) ## # A tibble: 6 x 6 ## word2 he she total log.ratio abs.ratio ## ## 1 testified 0.0002194908 0.0027206771 18 3.631734 3.631734 ## 2 awoke 0.0001097454 0.0010580411 6 3.269163 3.269163 ## 3 filed 0.0002194908 0.0021160822 14 3.269163 3.269163 ## 4 woke 0.0002194908 0.0019649335 13 3.162248 3.162248 ## 5 misses 0.0001097454 0.0007557437 4 2.783737 2.783737 ## 6 quickly 0.0001097454 0.0007557437 4 2.783737 2.783737

    A couple of observations. First, n-grams overlap, resulting in 1.6M observations (and this is only the pre-period). However, we will only use the gendered subset, which is much more smaller in size. Second, as we define the log ratio as (she / he), the sign of the log ratio determines the direction (positive for she, negative for he), while the absolute value of the log ratio is just the effect size (without direction).

    Good stuff, no? Wait until you see the visualisations.

    Let There Be GGraphs

    Both David and Julia utilise neat data visualisations to drive home their point. I especially like the roboto theme/font, so I will just go ahead and use it. You need to install the fonts separately, so if you are missing them you will get an error message.

    devtools::install_github("juliasilge/silgelib") #Required Fonts #https://fonts.google.com/specimen/Roboto+Condensed #https://fonts.google.com/specimen/Roboto library(ggplot2) library(ggrepel) library(scales) library(silgelib) theme_set(theme_roboto())

    We are also loading several other libraries. In addition to the usual suspects, ggrepel will make sure we can plot overlapping labels in a bit nicer way. Let’s start by looking at the most gendered verbs in articles on sexual harassment. In other words, we are identifying which verbs are most skewed towards one gender. I maintain the original logarithmic scale, so the effect sizes are in magnitudes and easy to interpret. If you read the blog posts, you will notice that Julia reports a unidirectional magnitude (relative to she/he), so her scales go from

    .25x .5x x 2x 4x

    whereas David uses directions, i.e.

    'more he' 4x 2x x 2x 4x 'more she'

    In both cases, x denotes the same frequency (equally likely) of usage. I don’t think one approach is necessarily better than the other, but I went with David’s approach. Finally, I filter out non-verbs plus ‘have’ and only plot verbs that occur at least five times. If you are serious about filtering out (or the opposite, filtering on) classes of words—say a certain sentiment or a set of adjectives—you should locate a dictionary from an NLP package and extract the relevant words from there. Here, I am doing it quite ad-hoc (and manually):

    he.she.counts.before %>% filter(!word2 %in% c("himself", "herself", "ever", "quickly", "actually", "sexually", "allegedly", "have"), total >= 5) %>% group_by(direction = ifelse(log.ratio > 0, 'More "she"', "More 'he'")) %>% top_n(15, abs.ratio) %>% ungroup() %>% mutate(word2 = reorder(word2, log.ratio)) %>% ggplot(aes(word2, log.ratio, fill = direction)) + geom_col() + coord_flip() + labs(x = "", y = 'Relative appearance after "she" compared to "he"', fill = "", title = "Pre Weinstein: 2012-17 The Guardian Articles on Sexual Harassment", subtitle = "Top 15 Most Gendered (Skewed) Verbs after he/she; at least 5 occurrences.") + scale_y_continuous(labels = c("8X", "6X", "4X", "2X", "Same", "2X", "4X", "6X", "8X"), breaks = seq(-4, 4)) + guides(fill = guide_legend(reverse = TRUE)) + expand_limits(y = c(-4, 4))

    Several immediate and depressing trends emerge from the data. The top active verbs for women cluster on bringing charges: ‘testified’, ‘filed’; whereas male verbs seem to react to those with ‘argued’, ‘faces’, ‘acknowledges’, and ‘apologized’. Women ‘awoke’ and ‘woke’, matching the more violent male verbs such as ‘drugged’, ‘assaulted’, ‘punched’, and ‘raped’. ‘Alleged’ occurs four times more after she relative to he, and there is no mention of denial (e.g. ‘denied’, ‘denies’) after he. A note on word variations: in some cases, it might be better to combine conjugations into a single category using a wildcard (such as expect* in the graph above). However, I thought the tense can also contribute to a quantitative story, so I left them as they are.

    Another way of visualising the gendered differences is to plot their magnitude in addition to their frequency. This time, we are not limited to just verbs; however we still filter out some uninteresting words. There are additional ggplot and ggrepel arguments in this plot. First, I added two reference lines: a red y-intercept with geom_hline to act as a baseline and an invisible x-intercept using geom_vline to give the labels more space on the left-hand side. Do you not love tidy grammar? Last but not least, I insert geom_text_repel to give us more readability: segment.alpha controls the line transparency, while the force argument governs the aggressiveness of the jittering algorithm. We could supply it with a fill argument that corresponds to a factor variable to highlight a certain characteristic (say, total occurrence), however there is not much meaningful variation there in our case.

    he.she.counts.before %>% filter(!word2 %in% c("himself", "herself", "she", "too", "later", "apos", "just", "says"), total >= 10) %>% top_n(100, abs.ratio) %>% ggplot(aes(total, log.ratio)) + geom_point() + geom_vline(xintercept = 5, color = "NA") + geom_hline(yintercept = 0, color = "red") + scale_x_log10(breaks = c(10, 100, 1000)) + geom_text_repel(aes(label = word2), segment.alpha = .1, force = 2) + scale_y_continuous(breaks = seq(-4, 4), labels = c('8X "he"', '6X "he"', '4X "he"', '2X "he"', "Same", '2X "she"', '4X "she"', '6X "she"', '8X "she"')) + labs(x = 'Total uses after "he" or "she" (Logarithmic scale)', y = 'Relative uses after "she" to after "he"', title = "Gendered Reporting: Pre Weinstein, The Guardian", subtitle = "Words occurring at least 10 times after he/she: 160 unique words (100 displayed) | 11,013 occurrences in total") + expand_limits(y = c(4, -4))

    Plotting frequencies complement the first plot quite nicely. We can infer reported characteristics more easily when there is a tangible baseline. Words around the red line occur after she or he more or less equally: the y-axis determines the relational effect size (with regards to gender), and the x-axis displays the total amount of occurrences. Some additional insights: we see that ‘sexually’ and ‘allegedly’ popping up after he quite frequently. There is also the verb ‘admitted’, as well as ‘denies’ (even though visually it is located above the red line, if you follow the grey segment, it’s located around 1X ‘he’). For women, more morbid words like ‘suffered’, ‘died’ are added to the mix. There are also nuances regarding the tense; ‘claims’ follows she twice more than he, while ‘claimed’ is twice likely to come after he.

    Moving on to the post-Weinstein period (‘the effect’), I quietly run the same code, and plot the equivalent graphics below. Some caveats: with the smaller sample size, I lowered the inclusion threshold from 5 to 2. Additionally, although it is top 15 most skewed verbs per gender, because of frequent ties, it ends up having more than that at the end.

    After the scandal broke, we see that women are reported to have ‘complained’, ‘hoped’, and ‘became’. On the other hand, men are vehemently denying the accusations, with ‘denies’ and ‘denied’ being the most skewed verbs following he. Random point: in the pre-period, it’s ‘apologized’, in the post-period, it’s ‘apologised’. Maybe Brexit can manifest in mysterious ways.

    Again we turn to the frequency plot to infer more. In addition to denial, men are also reported to use words such as ‘categorically’ and ‘utterly’. Both ‘claims’ and ‘claimed’ occur more after she, not repeating the earlier dynamic regarding the tense. In addition, we don’t see ‘alleged’ or ‘allegedly’ featured in the plot at all. How much of this change can we attribute to the effect? At a glance, we definitely see a difference. For example, verbs display a good variation for both genders. The post-frequency plot features less violent words than the pre-frequency plot. There is a lot more ‘denying’ and not much ‘alleging’ in the post-Weinstein period.

    Some are definitely data artefacts. The post-frequency plot is ‘cleaner’—in addition to (and directly caused by) the smaller n—because the cut-off point is set to ‘more than once’: if we remove the filter, all the violence and harassment terms are back in. Some are probably reporter/reporting biases plus the prevalent gendered thinking (that occurs both on a conscious level and below). And perhaps some are genuine effects—true signal. It is still too early to pass judgement on whether the Weinstein effect will result in tangible, positive change. Currently, all we can get is a short, limited glimpse at the available data.

    Hopefully you managed to enjoy this rather depressing data undertaking using the tidytext package. As usual, the underlying code is available on GitHub. N-grams are powerful. Imagine the possibilities: assume you have access to a rich dataset (say, minimum 100K very long articles/essays). You can construct n-grams sequentially; i.e. 2-grams; 3-grams, 4-grams etc., separate the words, and subset for gendered pronouns. This would give you access to structures like “he” + “word” + “her” (direct action) and “she” + “word” + “word” + “him” (allowing for adjective + verb). Then it would be possible to look for all kinds of interactions, revealing their underlying structure. I will be reporting more on this front, until I move onto image processing (looking at you, keras).

    Let’s block ads! (Why?)

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: Computational Social Science. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    Please inspect your dplyr+database code

    Sat, 12/02/2017 - 17:32

    (This article was first published on R – Win-Vector Blog, and kindly contributed to R-bloggers)

    A note to dplyr with database users: you may benefit from inspecting/re-factoring your code to eliminate value re-use inside dplyr::mutate() statements.

    If you are using the R dplyr package with a database or with Apache Spark: I respectfully advise you inspect your code to ensure you are not using any values created inside a dplyr::mutate() statement inside the same dplyr::mutate() statement. This has been my coding advice for some time, and it is a simple and safe re-factoring to break up such statements into safer sequences (simply by introducing more dplyr::mutate()s).

    I have since encountered a non-signaling (or silent) result corruption version of the issue. We are now advising code inspection as we now have confirmation that not seeing a thrown error is not a reliable indication of correct execution and correct results.

    To keep things in proportion: if you are not writing multi-assignment mutates on a dplyr database-backed system you can’t run into the problem (though, for performance, multi-statement mutates are preferred over database sources such as Apache Spark).

    The issue has been reported to the dplyr team. And I presume a fix is in the works. However, one does not want to be distributing incorrect results in the interim. This is the advice I have been giving private clients. After some thought I have come to feel it would be unfair to withhold such advice from the larger R community. This is not meant to make dplyr look bad, but to try and help prevent both dplyr and dplyr users from unnecessarily looking bad.

    To be clear: I am a proponent of dplyr plus database development (which is why I ran into this). Also, I am not affiliated with RStudio or affiliated with the dplyr development team.

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: R – Win-Vector Blog. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    Gold-Mining – Week 13 (2017)

    Sat, 12/02/2017 - 16:48

    (This article was first published on R – Fantasy Football Analytics, and kindly contributed to R-bloggers)

    Week 13 Gold Mining and Fantasy Football Projection Roundup now available. Go get that free agent gold!

    The post Gold-Mining – Week 13 (2017) appeared first on Fantasy Football Analytics.

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: R – Fantasy Football Analytics. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    Getting Started with R

    Sat, 12/02/2017 - 15:17

    (This article was first published on Data Perspective, and kindly contributed to R-bloggers)

    /*! * * Twitter Bootstrap * */ /*! * Bootstrap v3.3.7 (http://getbootstrap.com) * Copyright 2011-2016 Twitter, Inc. * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE) */ /*! normalize.css v3.0.3 | MIT License | github.com/necolas/normalize.css */ html { font-family: sans-serif; -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100%; } body { margin: 0; } article, aside, details, figcaption, figure, footer, header, hgroup, main, menu, nav, section, summary { display: block; } audio, canvas, progress, video { display: inline-block; vertical-align: baseline; } audio:not([controls]) { display: none; height: 0; } [hidden], template { display: none; } a { background-color: transparent; } a:active, a:hover { outline: 0; } abbr[title] { border-bottom: 1px dotted; } b, strong { font-weight: bold; } dfn { font-style: italic; } h1 { font-size: 2em; margin: 0.67em 0; } mark { background: #ff0; color: #000; } small { font-size: 80%; } sub, sup { font-size: 75%; line-height: 0; position: relative; vertical-align: baseline; } sup { top: -0.5em; } sub { bottom: -0.25em; } img { border: 0; } svg:not(:root) { overflow: hidden; } figure { margin: 1em 40px; } hr { box-sizing: content-box; height: 0; } pre { overflow: auto; } code, kbd, pre, samp { font-family: monospace, monospace; font-size: 1em; } button, input, optgroup, select, textarea { color: inherit; font: inherit; margin: 0; } button { overflow: visible; } button, select { text-transform: none; } button, html input[type="button"], input[type="reset"], input[type="submit"] { -webkit-appearance: button; cursor: pointer; } button[disabled], html input[disabled] { cursor: default; } button::-moz-focus-inner, input::-moz-focus-inner { border: 0; padding: 0; } input { line-height: normal; } input[type="checkbox"], input[type="radio"] { box-sizing: border-box; padding: 0; } input[type="number"]::-webkit-inner-spin-button, input[type="number"]::-webkit-outer-spin-button { height: auto; } input[type="search"] { -webkit-appearance: textfield; box-sizing: content-box; } input[type="search"]::-webkit-search-cancel-button, input[type="search"]::-webkit-search-decoration { -webkit-appearance: none; } fieldset { border: 1px solid #c0c0c0; margin: 0 2px; padding: 0.35em 0.625em 0.75em; } legend { border: 0; padding: 0; } textarea { overflow: auto; } optgroup { font-weight: bold; } table { border-collapse: collapse; border-spacing: 0; } td, th { padding: 0; } /*! Source: https://github.com/h5bp/html5-boilerplate/blob/master/src/css/main.css */ @media print { *, *:before, *:after { background: transparent !important; color: #000 !important; box-shadow: none !important; text-shadow: none !important; } a, a:visited { text-decoration: underline; } a[href]:after { content: " (" attr(href) ")"; } abbr[title]:after { content: " (" attr(title) ")"; } a[href^="#"]:after, a[href^="javascript:"]:after { content: ""; } pre, blockquote { border: 1px solid #999; page-break-inside: avoid; } thead { display: table-header-group; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } .navbar { display: none; } .btn > .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordered td { border: 1px solid #ddd !important; } } @font-face { font-family: 'Glyphicons Halflings'; src: url('../components/bootstrap/fonts/glyphicons-halflings-regular.eot'); src: url('../components/bootstrap/fonts/glyphicons-halflings-regular.eot?#iefix') format('embedded-opentype'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.woff2') format('woff2'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.woff') format('woff'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.ttf') format('truetype'), url('../components/bootstrap/fonts/glyphicons-halflings-regular.svg#glyphicons_halflingsregular') format('svg'); } .glyphicon { position: relative; top: 1px; display: inline-block; font-family: 'Glyphicons Halflings'; font-style: normal; font-weight: normal; line-height: 1; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; } .glyphicon-asterisk:before { content: "\002a"; } .glyphicon-plus:before { content: "\002b"; } .glyphicon-euro:before, .glyphicon-eur:before { content: "\20ac"; } .glyphicon-minus:before { content: "\2212"; } .glyphicon-cloud:before { content: "\2601"; } .glyphicon-envelope:before { content: "\2709"; } .glyphicon-pencil:before { content: "\270f"; } .glyphicon-glass:before { content: "\e001"; } .glyphicon-music:before { content: "\e002"; } .glyphicon-search:before { content: "\e003"; } .glyphicon-heart:before { content: "\e005"; } .glyphicon-star:before { content: "\e006"; } .glyphicon-star-empty:before { content: "\e007"; } .glyphicon-user:before { content: "\e008"; } .glyphicon-film:before { content: "\e009"; } .glyphicon-th-large:before { content: "\e010"; } .glyphicon-th:before { content: "\e011"; } .glyphicon-th-list:before { content: "\e012"; } .glyphicon-ok:before { content: "\e013"; } .glyphicon-remove:before { content: "\e014"; } .glyphicon-zoom-in:before { content: "\e015"; } .glyphicon-zoom-out:before { content: "\e016"; } .glyphicon-off:before { content: "\e017"; } .glyphicon-signal:before { content: "\e018"; } .glyphicon-cog:before { content: "\e019"; } .glyphicon-trash:before { content: "\e020"; } .glyphicon-home:before { content: "\e021"; } .glyphicon-file:before { content: "\e022"; } .glyphicon-time:before { content: "\e023"; } .glyphicon-road:before { content: "\e024"; } .glyphicon-download-alt:before { content: "\e025"; } .glyphicon-download:before { content: "\e026"; } .glyphicon-upload:before { content: "\e027"; } .glyphicon-inbox:before { content: "\e028"; } .glyphicon-play-circle:before { content: "\e029"; } .glyphicon-repeat:before { content: "\e030"; } .glyphicon-refresh:before { content: "\e031"; } .glyphicon-list-alt:before { content: "\e032"; } .glyphicon-lock:before { content: "\e033"; } .glyphicon-flag:before { content: "\e034"; } .glyphicon-headphones:before { content: "\e035"; } .glyphicon-volume-off:before { content: "\e036"; } .glyphicon-volume-down:before { content: "\e037"; } .glyphicon-volume-up:before { content: "\e038"; } .glyphicon-qrcode:before { content: "\e039"; } .glyphicon-barcode:before { content: "\e040"; } .glyphicon-tag:before { content: "\e041"; } .glyphicon-tags:before { content: "\e042"; } .glyphicon-book:before { content: "\e043"; } .glyphicon-bookmark:before { content: "\e044"; } .glyphicon-print:before { content: "\e045"; } .glyphicon-camera:before { content: "\e046"; } .glyphicon-font:before { content: "\e047"; } .glyphicon-bold:before { content: "\e048"; } .glyphicon-italic:before { content: "\e049"; } .glyphicon-text-height:before { content: "\e050"; } .glyphicon-text-width:before { content: "\e051"; } .glyphicon-align-left:before { content: "\e052"; } .glyphicon-align-center:before { content: "\e053"; } .glyphicon-align-right:before { content: "\e054"; } .glyphicon-align-justify:before { content: "\e055"; } .glyphicon-list:before { content: "\e056"; } .glyphicon-indent-left:before { content: "\e057"; } .glyphicon-indent-right:before { content: "\e058"; } .glyphicon-facetime-video:before { content: "\e059"; } .glyphicon-picture:before { content: "\e060"; } .glyphicon-map-marker:before { content: "\e062"; } .glyphicon-adjust:before { content: "\e063"; } .glyphicon-tint:before { content: "\e064"; } .glyphicon-edit:before { content: "\e065"; } .glyphicon-share:before { content: "\e066"; } .glyphicon-check:before { content: "\e067"; } .glyphicon-move:before { content: "\e068"; } .glyphicon-step-backward:before { content: "\e069"; } .glyphicon-fast-backward:before { content: "\e070"; } .glyphicon-backward:before { content: "\e071"; } .glyphicon-play:before { content: "\e072"; } .glyphicon-pause:before { content: "\e073"; } .glyphicon-stop:before { content: "\e074"; } .glyphicon-forward:before { content: "\e075"; } .glyphicon-fast-forward:before { content: "\e076"; } .glyphicon-step-forward:before { content: "\e077"; } .glyphicon-eject:before { content: "\e078"; } .glyphicon-chevron-left:before { content: "\e079"; } .glyphicon-chevron-right:before { content: "\e080"; } .glyphicon-plus-sign:before { content: "\e081"; } .glyphicon-minus-sign:before { content: "\e082"; } .glyphicon-remove-sign:before { content: "\e083"; } .glyphicon-ok-sign:before { content: "\e084"; } .glyphicon-question-sign:before { content: "\e085"; } .glyphicon-info-sign:before { content: "\e086"; } .glyphicon-screenshot:before { content: "\e087"; } .glyphicon-remove-circle:before { content: "\e088"; } .glyphicon-ok-circle:before { content: "\e089"; } .glyphicon-ban-circle:before { content: "\e090"; } .glyphicon-arrow-left:before { content: "\e091"; } .glyphicon-arrow-right:before { content: "\e092"; } .glyphicon-arrow-up:before { content: "\e093"; } .glyphicon-arrow-down:before { content: "\e094"; } .glyphicon-share-alt:before { content: "\e095"; } .glyphicon-resize-full:before { content: "\e096"; } .glyphicon-resize-small:before { content: "\e097"; } .glyphicon-exclamation-sign:before { content: "\e101"; } .glyphicon-gift:before { content: "\e102"; } .glyphicon-leaf:before { content: "\e103"; } .glyphicon-fire:before { content: "\e104"; } .glyphicon-eye-open:before { content: "\e105"; } .glyphicon-eye-close:before { content: "\e106"; } .glyphicon-warning-sign:before { content: "\e107"; } .glyphicon-plane:before { content: "\e108"; } .glyphicon-calendar:before { content: "\e109"; } .glyphicon-random:before { content: "\e110"; } .glyphicon-comment:before { content: "\e111"; } .glyphicon-magnet:before { content: "\e112"; } .glyphicon-chevron-up:before { content: "\e113"; } .glyphicon-chevron-down:before { content: "\e114"; } .glyphicon-retweet:before { content: "\e115"; } .glyphicon-shopping-cart:before { content: "\e116"; } .glyphicon-folder-close:before { content: "\e117"; } .glyphicon-folder-open:before { content: "\e118"; } .glyphicon-resize-vertical:before { content: "\e119"; } .glyphicon-resize-horizontal:before { content: "\e120"; } .glyphicon-hdd:before { content: "\e121"; } .glyphicon-bullhorn:before { content: "\e122"; } .glyphicon-bell:before { content: "\e123"; } .glyphicon-certificate:before { content: "\e124"; } .glyphicon-thumbs-up:before { content: "\e125"; } .glyphicon-thumbs-down:before { content: "\e126"; } .glyphicon-hand-right:before { content: "\e127"; } .glyphicon-hand-left:before { content: "\e128"; } .glyphicon-hand-up:before { content: "\e129"; } .glyphicon-hand-down:before { content: "\e130"; } .glyphicon-circle-arrow-right:before { content: "\e131"; } .glyphicon-circle-arrow-left:before { content: "\e132"; } .glyphicon-circle-arrow-up:before { content: "\e133"; } .glyphicon-circle-arrow-down:before { content: "\e134"; } .glyphicon-globe:before { content: "\e135"; } .glyphicon-wrench:before { content: "\e136"; } .glyphicon-tasks:before { content: "\e137"; } .glyphicon-filter:before { content: "\e138"; } .glyphicon-briefcase:before { content: "\e139"; } .glyphicon-fullscreen:before { content: "\e140"; } .glyphicon-dashboard:before { content: "\e141"; } .glyphicon-paperclip:before { content: "\e142"; } .glyphicon-heart-empty:before { content: "\e143"; } .glyphicon-link:before { content: "\e144"; } .glyphicon-phone:before { content: "\e145"; } .glyphicon-pushpin:before { content: "\e146"; } .glyphicon-usd:before { content: "\e148"; } .glyphicon-gbp:before { content: "\e149"; } .glyphicon-sort:before { content: "\e150"; } .glyphicon-sort-by-alphabet:before { content: "\e151"; } .glyphicon-sort-by-alphabet-alt:before { content: "\e152"; } .glyphicon-sort-by-order:before { content: "\e153"; } .glyphicon-sort-by-order-alt:before { content: "\e154"; } .glyphicon-sort-by-attributes:before { content: "\e155"; } .glyphicon-sort-by-attributes-alt:before { content: "\e156"; } .glyphicon-unchecked:before { content: "\e157"; } .glyphicon-expand:before { content: "\e158"; } .glyphicon-collapse-down:before { content: "\e159"; } .glyphicon-collapse-up:before { content: "\e160"; } .glyphicon-log-in:before { content: "\e161"; } .glyphicon-flash:before { content: "\e162"; } .glyphicon-log-out:before { content: "\e163"; } .glyphicon-new-window:before { content: "\e164"; } .glyphicon-record:before { content: "\e165"; } .glyphicon-save:before { content: "\e166"; } .glyphicon-open:before { content: "\e167"; } .glyphicon-saved:before { content: "\e168"; } .glyphicon-import:before { content: "\e169"; } .glyphicon-export:before { content: "\e170"; } .glyphicon-send:before { content: "\e171"; } .glyphicon-floppy-disk:before { content: "\e172"; } .glyphicon-floppy-saved:before { content: "\e173"; } .glyphicon-floppy-remove:before { content: "\e174"; } .glyphicon-floppy-save:before { content: "\e175"; } .glyphicon-floppy-open:before { content: "\e176"; } .glyphicon-credit-card:before { content: "\e177"; } .glyphicon-transfer:before { content: "\e178"; } .glyphicon-cutlery:before { content: "\e179"; } .glyphicon-header:before { content: "\e180"; } .glyphicon-compressed:before { content: "\e181"; } .glyphicon-earphone:before { content: "\e182"; } .glyphicon-phone-alt:before { content: "\e183"; } .glyphicon-tower:before { content: "\e184"; } .glyphicon-stats:before { content: "\e185"; } .glyphicon-sd-video:before { content: "\e186"; } .glyphicon-hd-video:before { content: "\e187"; } .glyphicon-subtitles:before { content: "\e188"; } .glyphicon-sound-stereo:before { content: "\e189"; } .glyphicon-sound-dolby:before { content: "\e190"; } .glyphicon-sound-5-1:before { content: "\e191"; } .glyphicon-sound-6-1:before { content: "\e192"; } .glyphicon-sound-7-1:before { content: "\e193"; } .glyphicon-copyright-mark:before { content: "\e194"; } .glyphicon-registration-mark:before { content: "\e195"; } .glyphicon-cloud-download:before { content: "\e197"; } .glyphicon-cloud-upload:before { content: "\e198"; } .glyphicon-tree-conifer:before { content: "\e199"; } .glyphicon-tree-deciduous:before { content: "\e200"; } .glyphicon-cd:before { content: "\e201"; } .glyphicon-save-file:before { content: "\e202"; } .glyphicon-open-file:before { content: "\e203"; } .glyphicon-level-up:before { content: "\e204"; } .glyphicon-copy:before { content: "\e205"; } .glyphicon-paste:before { content: "\e206"; } .glyphicon-alert:before { content: "\e209"; } .glyphicon-equalizer:before { content: "\e210"; } .glyphicon-king:before { content: "\e211"; } .glyphicon-queen:before { content: "\e212"; } .glyphicon-pawn:before { content: "\e213"; } .glyphicon-bishop:before { content: "\e214"; } .glyphicon-knight:before { content: "\e215"; } .glyphicon-baby-formula:before { content: "\e216"; } .glyphicon-tent:before { content: "\26fa"; } .glyphicon-blackboard:before { content: "\e218"; } .glyphicon-bed:before { content: "\e219"; } .glyphicon-apple:before { content: "\f8ff"; } .glyphicon-erase:before { content: "\e221"; } .glyphicon-hourglass:before { content: "\231b"; } .glyphicon-lamp:before { content: "\e223"; } .glyphicon-duplicate:before { content: "\e224"; } .glyphicon-piggy-bank:before { content: "\e225"; } .glyphicon-scissors:before { content: "\e226"; } .glyphicon-bitcoin:before { content: "\e227"; } .glyphicon-btc:before { content: "\e227"; } .glyphicon-xbt:before { content: "\e227"; } .glyphicon-yen:before { content: "\00a5"; } .glyphicon-jpy:before { content: "\00a5"; } .glyphicon-ruble:before { content: "\20bd"; } .glyphicon-rub:before { content: "\20bd"; } .glyphicon-scale:before { content: "\e230"; } .glyphicon-ice-lolly:before { content: "\e231"; } .glyphicon-ice-lolly-tasted:before { content: "\e232"; } .glyphicon-education:before { content: "\e233"; } .glyphicon-option-horizontal:before { content: "\e234"; } .glyphicon-option-vertical:before { content: "\e235"; } .glyphicon-menu-hamburger:before { content: "\e236"; } .glyphicon-modal-window:before { content: "\e237"; } .glyphicon-oil:before { content: "\e238"; } .glyphicon-grain:before { content: "\e239"; } .glyphicon-sunglasses:before { content: "\e240"; } .glyphicon-text-size:before { content: "\e241"; } .glyphicon-text-color:before { content: "\e242"; } .glyphicon-text-background:before { content: "\e243"; } .glyphicon-object-align-top:before { content: "\e244"; } .glyphicon-object-align-bottom:before { content: "\e245"; } .glyphicon-object-align-horizontal:before { content: "\e246"; } .glyphicon-object-align-left:before { content: "\e247"; } .glyphicon-object-align-vertical:before { content: "\e248"; } .glyphicon-object-align-right:before { content: "\e249"; } .glyphicon-triangle-right:before { content: "\e250"; } .glyphicon-triangle-left:before { content: "\e251"; } .glyphicon-triangle-bottom:before { content: "\e252"; } .glyphicon-triangle-top:before { content: "\e253"; } .glyphicon-console:before { content: "\e254"; } .glyphicon-superscript:before { content: "\e255"; } .glyphicon-subscript:before { content: "\e256"; } .glyphicon-menu-left:before { content: "\e257"; } .glyphicon-menu-right:before { content: "\e258"; } .glyphicon-menu-down:before { content: "\e259"; } .glyphicon-menu-up:before { content: "\e260"; } * { -webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box; } *:before, *:after { -webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box; } html { font-size: 10px; -webkit-tap-highlight-color: rgba(0, 0, 0, 0); } body { font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; line-height: 1.42857143; color: #000; background-color: #fff; } input, button, select, textarea { font-family: inherit; font-size: inherit; line-height: inherit; } a { color: #337ab7; text-decoration: none; } a:hover, a:focus { color: #23527c; text-decoration: underline; } a:focus { outline: 5px auto -webkit-focus-ring-color; outline-offset: -2px; } figure { margin: 0; } img { vertical-align: middle; } .img-responsive, .thumbnail > img, .thumbnail a > img, .carousel-inner > .item > img, .carousel-inner > .item > a > img { display: block; max-width: 100%; height: auto; } .img-rounded { border-radius: 3px; } .img-thumbnail { padding: 4px; line-height: 1.42857143; background-color: #fff; border: 1px solid #ddd; border-radius: 2px; -webkit-transition: all 0.2s ease-in-out; -o-transition: all 0.2s ease-in-out; transition: all 0.2s ease-in-out; display: inline-block; max-width: 100%; height: auto; } .img-circle { border-radius: 50%; } hr { margin-top: 18px; margin-bottom: 18px; border: 0; border-top: 1px solid #eeeeee; } .sr-only { position: absolute; width: 1px; height: 1px; margin: -1px; padding: 0; overflow: hidden; clip: rect(0, 0, 0, 0); border: 0; } .sr-only-focusable:active, .sr-only-focusable:focus { position: static; width: auto; height: auto; margin: 0; overflow: visible; clip: auto; } [role="button"] { cursor: pointer; } h1, h2, h3, h4, h5, h6, .h1, .h2, .h3, .h4, .h5, .h6 { font-family: inherit; font-weight: 500; line-height: 1.1; color: inherit; } h1 small, h2 small, h3 small, h4 small, h5 small, h6 small, .h1 small, .h2 small, .h3 small, .h4 small, .h5 small, .h6 small, h1 .small, h2 .small, h3 .small, h4 .small, h5 .small, h6 .small, .h1 .small, .h2 .small, .h3 .small, .h4 .small, .h5 .small, .h6 .small { font-weight: normal; line-height: 1; color: #777777; } h1, .h1, h2, .h2, h3, .h3 { margin-top: 18px; margin-bottom: 9px; } h1 small, .h1 small, h2 small, .h2 small, h3 small, .h3 small, h1 .small, .h1 .small, h2 .small, .h2 .small, h3 .small, .h3 .small { font-size: 65%; } h4, .h4, h5, .h5, h6, .h6 { margin-top: 9px; margin-bottom: 9px; } h4 small, .h4 small, h5 small, .h5 small, h6 small, .h6 small, h4 .small, .h4 .small, h5 .small, .h5 .small, h6 .small, .h6 .small { font-size: 75%; } h1, .h1 { font-size: 33px; } h2, .h2 { font-size: 27px; } h3, .h3 { font-size: 23px; } h4, .h4 { font-size: 17px; } h5, .h5 { font-size: 13px; } h6, .h6 { font-size: 12px; } p { margin: 0 0 9px; } .lead { margin-bottom: 18px; font-size: 14px; font-weight: 300; line-height: 1.4; } @media (min-width: 600px { .lead { font-size: 19.5px; } } small, .small { font-size: 92%; } mark, .mark { background-color: #fcf8e3; padding: .2em; } .text-left { text-align: left; } .text-right { text-align: right; } .text-center { text-align: center; } .text-justify { text-align: justify; } .text-nowrap { white-space: nowrap; } .text-lowercase { text-transform: lowercase; } .text-uppercase { text-transform: uppercase; } .text-capitalize { text-transform: capitalize; } .text-muted { color: #777777; } .text-primary { color: #337ab7; } a.text-primary:hover, a.text-primary:focus { color: #286090; } .text-success { color: #3c763d; } a.text-success:hover, a.text-success:focus { color: #2b542c; } .text-info { color: #31708f; } a.text-info:hover, a.text-info:focus { color: #245269; } .text-warning { color: #8a6d3b; } a.text-warning:hover, a.text-warning:focus { color: #66512c; } .text-danger { color: #a94442; } a.text-danger:hover, a.text-danger:focus { color: #843534; } .bg-primary { color: #fff; background-color: #337ab7; } a.bg-primary:hover, a.bg-primary:focus { background-color: #286090; } .bg-success { background-color: #dff0d8; } a.bg-success:hover, a.bg-success:focus { background-color: #c1e2b3; } .bg-info { background-color: #d9edf7; } a.bg-info:hover, a.bg-info:focus { background-color: #afd9ee; } .bg-warning { background-color: #fcf8e3; } a.bg-warning:hover, a.bg-warning:focus { background-color: #f7ecb5; } .bg-danger { background-color: #f2dede; } a.bg-danger:hover, a.bg-danger:focus { background-color: #e4b9b9; } .page-header { padding-bottom: 8px; margin: 36px 0 18px; border-bottom: 1px solid #eeeeee; } ul, ol { margin-top: 0; margin-bottom: 9px; } ul ul, ol ul, ul ol, ol ol { margin-bottom: 0; } .list-unstyled { padding-left: 0; list-style: none; } .list-inline { padding-left: 0; list-style: none; margin-left: -5px; } .list-inline > li { display: inline-block; padding-left: 5px; padding-right: 5px; } dl { margin-top: 0; margin-bottom: 18px; } dt, dd { line-height: 1.42857143; } dt { font-weight: bold; } dd { margin-left: 0; } @media (min-width: 541px) { .dl-horizontal dt { float: left; width: 160px; clear: left; text-align: right; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; } .dl-horizontal dd { margin-left: 180px; } } abbr[title], abbr[data-original-title] { cursor: help; border-bottom: 1px dotted #777777; } .initialism { font-size: 90%; text-transform: uppercase; } blockquote { padding: 9px 18px; margin: 0 0 18px; font-size: inherit; border-left: 5px solid #eeeeee; } blockquote p:last-child, blockquote ul:last-child, blockquote ol:last-child { margin-bottom: 0; } blockquote footer, blockquote small, blockquote .small { display: block; font-size: 80%; line-height: 1.42857143; color: #777777; } blockquote footer:before, blockquote small:before, blockquote .small:before { content: '\2014 \00A0'; } .blockquote-reverse, blockquote.pull-right { padding-right: 15px; padding-left: 0; border-right: 5px solid #eeeeee; border-left: 0; text-align: right; } .blockquote-reverse footer:before, blockquote.pull-right footer:before, .blockquote-reverse small:before, blockquote.pull-right small:before, .blockquote-reverse .small:before, blockquote.pull-right .small:before { content: ''; } .blockquote-reverse footer:after, blockquote.pull-right footer:after, .blockquote-reverse small:after, blockquote.pull-right small:after, .blockquote-reverse .small:after, blockquote.pull-right .small:after { content: '\00A0 \2014'; } address { margin-bottom: 18px; font-style: normal; line-height: 1.42857143; } code, kbd, pre, samp { font-family: monospace; } code { padding: 2px 4px; font-size: 90%; color: #c7254e; background-color: #f9f2f4; border-radius: 2px; } kbd { padding: 2px 4px; font-size: 90%; color: #888; background-color: transparent; border-radius: 1px; box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.25); } kbd kbd { padding: 0; font-size: 100%; font-weight: bold; box-shadow: none; } pre { display: block; padding: 8.5px; margin: 0 0 9px; font-size: 12px; line-height: 1.42857143; word-break: break-all; word-wrap: break-word; color: #333333; background-color: #f5f5f5; border: 1px solid #ccc; border-radius: 2px; } pre code { padding: 0; font-size: inherit; color: inherit; white-space: pre-wrap; background-color: transparent; border-radius: 0; } .pre-scrollable { max-height: 340px; overflow-y: scroll; } .container { margin-right: auto; margin-left: auto; padding-left: 0px; padding-right: 0px; } @media (min-width: 600px { .container { width: 500px; } } @media (min-width: 600px { .container { width: 500px; } } @media (min-width: 600px { .container { width: 500px; } } .container-fluid { margin-right: auto; margin-left: auto; padding-left: 0px; padding-right: 0px; } .row { margin-left: 0px; margin-right: 0px; } .col-xs-1, .col-sm-1, .col-md-1, .col-lg-1, .col-xs-2, .col-sm-2, .col-md-2, .col-lg-2, .col-xs-3, .col-sm-3, .col-md-3, .col-lg-3, .col-xs-4, .col-sm-4, .col-md-4, .col-lg-4, .col-xs-5, .col-sm-5, .col-md-5, .col-lg-5, .col-xs-6, .col-sm-6, .col-md-6, .col-lg-6, .col-xs-7, .col-sm-7, .col-md-7, .col-lg-7, .col-xs-8, .col-sm-8, .col-md-8, .col-lg-8, .col-xs-9, .col-sm-9, .col-md-9, .col-lg-9, .col-xs-10, .col-sm-10, .col-md-10, .col-lg-10, .col-xs-11, .col-sm-11, .col-md-11, .col-lg-11, .col-xs-12, .col-sm-12, .col-md-12, .col-lg-12 { position: relative; min-height: 1px; padding-left: 0px; padding-right: 0px; } .col-xs-1, .col-xs-2, .col-xs-3, .col-xs-4, .col-xs-5, .col-xs-6, .col-xs-7, .col-xs-8, .col-xs-9, .col-xs-10, .col-xs-11, .col-xs-12 { float: left; } .col-xs-12 { width: 100%; } .col-xs-11 { width: 91.66666667%; } .col-xs-10 { width: 83.33333333%; } .col-xs-9 { width: 75%; } .col-xs-8 { width: 66.66666667%; } .col-xs-7 { width: 58.33333333%; } .col-xs-6 { width: 50%; } .col-xs-5 { width: 41.66666667%; } .col-xs-4 { width: 33.33333333%; } .col-xs-3 { width: 25%; } .col-xs-2 { width: 16.66666667%; } .col-xs-1 { width: 8.33333333%; } .col-xs-pull-12 { right: 100%; } .col-xs-pull-11 { right: 91.66666667%; } .col-xs-pull-10 { right: 83.33333333%; } .col-xs-pull-9 { right: 75%; } .col-xs-pull-8 { right: 66.66666667%; } .col-xs-pull-7 { right: 58.33333333%; } .col-xs-pull-6 { right: 50%; } .col-xs-pull-5 { right: 41.66666667%; } .col-xs-pull-4 { right: 33.33333333%; } .col-xs-pull-3 { right: 25%; } .col-xs-pull-2 { right: 16.66666667%; } .col-xs-pull-1 { right: 8.33333333%; } .col-xs-pull-0 { right: auto; } .col-xs-push-12 { left: 100%; } .col-xs-push-11 { left: 91.66666667%; } .col-xs-push-10 { left: 83.33333333%; } .col-xs-push-9 { left: 75%; } .col-xs-push-8 { left: 66.66666667%; } .col-xs-push-7 { left: 58.33333333%; } .col-xs-push-6 { left: 50%; } .col-xs-push-5 { left: 41.66666667%; } .col-xs-push-4 { left: 33.33333333%; } .col-xs-push-3 { left: 25%; } .col-xs-push-2 { left: 16.66666667%; } .col-xs-push-1 { left: 8.33333333%; } .col-xs-push-0 { left: auto; } .col-xs-offset-12 { margin-left: 100%; } .col-xs-offset-11 { margin-left: 91.66666667%; } .col-xs-offset-10 { margin-left: 83.33333333%; } .col-xs-offset-9 { margin-left: 75%; } .col-xs-offset-8 { margin-left: 66.66666667%; } .col-xs-offset-7 { margin-left: 58.33333333%; } .col-xs-offset-6 { margin-left: 50%; } .col-xs-offset-5 { margin-left: 41.66666667%; } .col-xs-offset-4 { margin-left: 33.33333333%; } .col-xs-offset-3 { margin-left: 25%; } .col-xs-offset-2 { margin-left: 16.66666667%; } .col-xs-offset-1 { margin-left: 8.33333333%; } .col-xs-offset-0 { margin-left: 0%; } @media (min-width: 600px { .col-sm-1, .col-sm-2, .col-sm-3, .col-sm-4, .col-sm-5, .col-sm-6, .col-sm-7, .col-sm-8, .col-sm-9, .col-sm-10, .col-sm-11, .col-sm-12 { float: left; } .col-sm-12 { width: 100%; } .col-sm-11 { width: 91.66666667%; } .col-sm-10 { width: 83.33333333%; } .col-sm-9 { width: 75%; } .col-sm-8 { width: 66.66666667%; } .col-sm-7 { width: 58.33333333%; } .col-sm-6 { width: 50%; } .col-sm-5 { width: 41.66666667%; } .col-sm-4 { width: 33.33333333%; } .col-sm-3 { width: 25%; } .col-sm-2 { width: 16.66666667%; } .col-sm-1 { width: 8.33333333%; } .col-sm-pull-12 { right: 100%; } .col-sm-pull-11 { right: 91.66666667%; } .col-sm-pull-10 { right: 83.33333333%; } .col-sm-pull-9 { right: 75%; } .col-sm-pull-8 { right: 66.66666667%; } .col-sm-pull-7 { right: 58.33333333%; } .col-sm-pull-6 { right: 50%; } .col-sm-pull-5 { right: 41.66666667%; } .col-sm-pull-4 { right: 33.33333333%; } .col-sm-pull-3 { right: 25%; } .col-sm-pull-2 { right: 16.66666667%; } .col-sm-pull-1 { right: 8.33333333%; } .col-sm-pull-0 { right: auto; } .col-sm-push-12 { left: 100%; } .col-sm-push-11 { left: 91.66666667%; } .col-sm-push-10 { left: 83.33333333%; } .col-sm-push-9 { left: 75%; } .col-sm-push-8 { left: 66.66666667%; } .col-sm-push-7 { left: 58.33333333%; } .col-sm-push-6 { left: 50%; } .col-sm-push-5 { left: 41.66666667%; } .col-sm-push-4 { left: 33.33333333%; } .col-sm-push-3 { left: 25%; } .col-sm-push-2 { left: 16.66666667%; } .col-sm-push-1 { left: 8.33333333%; } .col-sm-push-0 { left: auto; } .col-sm-offset-12 { margin-left: 100%; } .col-sm-offset-11 { margin-left: 91.66666667%; } .col-sm-offset-10 { margin-left: 83.33333333%; } .col-sm-offset-9 { margin-left: 75%; } .col-sm-offset-8 { margin-left: 66.66666667%; } .col-sm-offset-7 { margin-left: 58.33333333%; } .col-sm-offset-6 { margin-left: 50%; } .col-sm-offset-5 { margin-left: 41.66666667%; } .col-sm-offset-4 { margin-left: 33.33333333%; } .col-sm-offset-3 { margin-left: 25%; } .col-sm-offset-2 { margin-left: 16.66666667%; } .col-sm-offset-1 { margin-left: 8.33333333%; } .col-sm-offset-0 { margin-left: 0%; } } @media (min-width: 600px { .col-md-1, .col-md-2, .col-md-3, .col-md-4, .col-md-5, .col-md-6, .col-md-7, .col-md-8, .col-md-9, .col-md-10, .col-md-11, .col-md-12 { float: left; } .col-md-12 { width: 100%; } .col-md-11 { width: 91.66666667%; } .col-md-10 { width: 83.33333333%; } .col-md-9 { width: 75%; } .col-md-8 { width: 66.66666667%; } .col-md-7 { width: 58.33333333%; } .col-md-6 { width: 50%; } .col-md-5 { width: 41.66666667%; } .col-md-4 { width: 33.33333333%; } .col-md-3 { width: 25%; } .col-md-2 { width: 16.66666667%; } .col-md-1 { width: 8.33333333%; } .col-md-pull-12 { right: 100%; } .col-md-pull-11 { right: 91.66666667%; } .col-md-pull-10 { right: 83.33333333%; } .col-md-pull-9 { right: 75%; } .col-md-pull-8 { right: 66.66666667%; } .col-md-pull-7 { right: 58.33333333%; } .col-md-pull-6 { right: 50%; } .col-md-pull-5 { right: 41.66666667%; } .col-md-pull-4 { right: 33.33333333%; } .col-md-pull-3 { right: 25%; } .col-md-pull-2 { right: 16.66666667%; } .col-md-pull-1 { right: 8.33333333%; } .col-md-pull-0 { right: auto; } .col-md-push-12 { left: 100%; } .col-md-push-11 { left: 91.66666667%; } .col-md-push-10 { left: 83.33333333%; } .col-md-push-9 { left: 75%; } .col-md-push-8 { left: 66.66666667%; } .col-md-push-7 { left: 58.33333333%; } .col-md-push-6 { left: 50%; } .col-md-push-5 { left: 41.66666667%; } .col-md-push-4 { left: 33.33333333%; } .col-md-push-3 { left: 25%; } .col-md-push-2 { left: 16.66666667%; } .col-md-push-1 { left: 8.33333333%; } .col-md-push-0 { left: auto; } .col-md-offset-12 { margin-left: 100%; } .col-md-offset-11 { margin-left: 91.66666667%; } .col-md-offset-10 { margin-left: 83.33333333%; } .col-md-offset-9 { margin-left: 75%; } .col-md-offset-8 { margin-left: 66.66666667%; } .col-md-offset-7 { margin-left: 58.33333333%; } .col-md-offset-6 { margin-left: 50%; } .col-md-offset-5 { margin-left: 41.66666667%; } .col-md-offset-4 { margin-left: 33.33333333%; } .col-md-offset-3 { margin-left: 25%; } .col-md-offset-2 { margin-left: 16.66666667%; } .col-md-offset-1 { margin-left: 8.33333333%; } .col-md-offset-0 { margin-left: 0%; } } @media (min-width: 600px { .col-lg-1, .col-lg-2, .col-lg-3, .col-lg-4, .col-lg-5, .col-lg-6, .col-lg-7, .col-lg-8, .col-lg-9, .col-lg-10, .col-lg-11, .col-lg-12 { float: left; } .col-lg-12 { width: 100%; } .col-lg-11 { width: 91.66666667%; } .col-lg-10 { width: 83.33333333%; } .col-lg-9 { width: 75%; } .col-lg-8 { width: 66.66666667%; } .col-lg-7 { width: 58.33333333%; } .col-lg-6 { width: 50%; } .col-lg-5 { width: 41.66666667%; } .col-lg-4 { width: 33.33333333%; } .col-lg-3 { width: 25%; } .col-lg-2 { width: 16.66666667%; } .col-lg-1 { width: 8.33333333%; } .col-lg-pull-12 { right: 100%; } .col-lg-pull-11 { right: 91.66666667%; } .col-lg-pull-10 { right: 83.33333333%; } .col-lg-pull-9 { right: 75%; } .col-lg-pull-8 { right: 66.66666667%; } .col-lg-pull-7 { right: 58.33333333%; } .col-lg-pull-6 { right: 50%; } .col-lg-pull-5 { right: 41.66666667%; } .col-lg-pull-4 { right: 33.33333333%; } .col-lg-pull-3 { right: 25%; } .col-lg-pull-2 { right: 16.66666667%; } .col-lg-pull-1 { right: 8.33333333%; } .col-lg-pull-0 { right: auto; } .col-lg-push-12 { left: 100%; } .col-lg-push-11 { left: 91.66666667%; } .col-lg-push-10 { left: 83.33333333%; } .col-lg-push-9 { left: 75%; } .col-lg-push-8 { left: 66.66666667%; } .col-lg-push-7 { left: 58.33333333%; } .col-lg-push-6 { left: 50%; } .col-lg-push-5 { left: 41.66666667%; } .col-lg-push-4 { left: 33.33333333%; } .col-lg-push-3 { left: 25%; } .col-lg-push-2 { left: 16.66666667%; } .col-lg-push-1 { left: 8.33333333%; } .col-lg-push-0 { left: auto; } .col-lg-offset-12 { margin-left: 100%; } .col-lg-offset-11 { margin-left: 91.66666667%; } .col-lg-offset-10 { margin-left: 83.33333333%; } .col-lg-offset-9 { margin-left: 75%; } .col-lg-offset-8 { margin-left: 66.66666667%; } .col-lg-offset-7 { margin-left: 58.33333333%; } .col-lg-offset-6 { margin-left: 50%; } .col-lg-offset-5 { margin-left: 41.66666667%; } .col-lg-offset-4 { margin-left: 33.33333333%; } .col-lg-offset-3 { margin-left: 25%; } .col-lg-offset-2 { margin-left: 16.66666667%; } .col-lg-offset-1 { margin-left: 8.33333333%; } .col-lg-offset-0 { margin-left: 0%; } } table { background-color: transparent; } caption { padding-top: 8px; padding-bottom: 8px; color: #777777; text-align: left; } th { text-align: left; } .table { width: 100%; max-width: 100%; margin-bottom: 18px; } .table > thead > tr > th, .table > tbody > tr > th, .table > tfoot > tr > th, .table > thead > tr > td, .table > tbody > tr > td, .table > tfoot > tr > td { padding: 8px; line-height: 1.42857143; vertical-align: top; border-top: 1px solid #ddd; } .table > thead > tr > th { vertical-align: bottom; border-bottom: 2px solid #ddd; } .table > caption + thead > tr:first-child > th, .table > colgroup + thead > tr:first-child > th, .table > thead:first-child > tr:first-child > th, .table > caption + thead > tr:first-child > td, .table > colgroup + thead > tr:first-child > td, .table > thead:first-child > tr:first-child > td { border-top: 0; } .table > tbody + tbody { border-top: 2px solid #ddd; } .table .table { background-color: #fff; } .table-condensed > thead > tr > th, .table-condensed > tbody > tr > th, .table-condensed > tfoot > tr > th, .table-condensed > thead > tr > td, .table-condensed > tbody > tr > td, .table-condensed > tfoot > tr > td { padding: 5px; } .table-bordered { border: 1px solid #ddd; } .table-bordered > thead > tr > th, .table-bordered > tbody > tr > th, .table-bordered > tfoot > tr > th, .table-bordered > thead > tr > td, .table-bordered > tbody > tr > td, .table-bordered > tfoot > tr > td { border: 1px solid #ddd; } .table-bordered > thead > tr > th, .table-bordered > thead > tr > td { border-bottom-width: 2px; } .table-striped > tbody > tr:nth-of-type(odd) { background-color: #f9f9f9; } .table-hover > tbody > tr:hover { background-color: #f5f5f5; } table col[class*="col-"] { position: static; float: none; display: table-column; } table td[class*="col-"], table th[class*="col-"] { position: static; float: none; display: table-cell; } .table > thead > tr > td.active, .table > tbody > tr > td.active, .table > tfoot > tr > td.active, .table > thead > tr > th.active, .table > tbody > tr > th.active, .table > tfoot > tr > th.active, .table > thead > tr.active > td, .table > tbody > tr.active > td, .table > tfoot > tr.active > td, .table > thead > tr.active > th, .table > tbody > tr.active > th, .table > tfoot > tr.active > th { background-color: #f5f5f5; } .table-hover > tbody > tr > td.active:hover, .table-hover > tbody > tr > th.active:hover, .table-hover > tbody > tr.active:hover > td, .table-hover > tbody > tr:hover > .active, .table-hover > tbody > tr.active:hover > th { background-color: #e8e8e8; } .table > thead > tr > td.success, .table > tbody > tr > td.success, .table > tfoot > tr > td.success, .table > thead > tr > th.success, .table > tbody > tr > th.success, .table > tfoot > tr > th.success, .table > thead > tr.success > td, .table > tbody > tr.success > td, .table > tfoot > tr.success > td, .table > thead > tr.success > th, .table > tbody > tr.success > th, .table > tfoot > tr.success > th { background-color: #dff0d8; } .table-hover > tbody > tr > td.success:hover, .table-hover > tbody > tr > th.success:hover, .table-hover > tbody > tr.success:hover > td, .table-hover > tbody > tr:hover > .success, .table-hover > tbody > tr.success:hover > th { background-color: #d0e9c6; } .table > thead > tr > td.info, .table > tbody > tr > td.info, .table > tfoot > tr > td.info, .table > thead > tr > th.info, .table > tbody > tr > th.info, .table > tfoot > tr > th.info, .table > thead > tr.info > td, .table > tbody > tr.info > td, .table > tfoot > tr.info > td, .table > thead > tr.info > th, .table > tbody > tr.info > th, .table > tfoot > tr.info > th { background-color: #d9edf7; } .table-hover > tbody > tr > td.info:hover, .table-hover > tbody > tr > th.info:hover, .table-hover > tbody > tr.info:hover > td, .table-hover > tbody > tr:hover > .info, .table-hover > tbody > tr.info:hover > th { background-color: #c4e3f3; } .table > thead > tr > td.warning, .table > tbody > tr > td.warning, .table > tfoot > tr > td.warning, .table > thead > tr > th.warning, .table > tbody > tr > th.warning, .table > tfoot > tr > th.warning, .table > thead > tr.warning > td, .table > tbody > tr.warning > td, .table > tfoot > tr.warning > td, .table > thead > tr.warning > th, .table > tbody > tr.warning > th, .table > tfoot > tr.warning > th { background-color: #fcf8e3; } .table-hover > tbody > tr > td.warning:hover, .table-hover > tbody > tr > th.warning:hover, .table-hover > tbody > tr.warning:hover > td, .table-hover > tbody > tr:hover > .warning, .table-hover > tbody > tr.warning:hover > th { background-color: #faf2cc; } .table > thead > tr > td.danger, .table > tbody > tr > td.danger, .table > tfoot > tr > td.danger, .table > thead > tr > th.danger, .table > tbody > tr > th.danger, .table > tfoot > tr > th.danger, .table > thead > tr.danger > td, .table > tbody > tr.danger > td, .table > tfoot > tr.danger > td, .table > thead > tr.danger > th, .table > tbody > tr.danger > th, .table > tfoot > tr.danger > th { background-color: #f2dede; } .table-hover > tbody > tr > td.danger:hover, .table-hover > tbody > tr > th.danger:hover, .table-hover > tbody > tr.danger:hover > td, .table-hover > tbody > tr:hover > .danger, .table-hover > tbody > tr.danger:hover > th { background-color: #ebcccc; } .table-responsive { overflow-x: auto; min-height: 0.01%; } @media screen and (max-width: 500px) { .table-responsive { width: 100%; margin-bottom: 13.5px; overflow-y: hidden; -ms-overflow-style: -ms-autohiding-scrollbar; border: 1px solid #ddd; } .table-responsive > .table { margin-bottom: 0; } .table-responsive > .table > thead > tr > th, .table-responsive > .table > tbody > tr > th, .table-responsive > .table > tfoot > tr > th, .table-responsive > .table > thead > tr > td, .table-responsive > .table > tbody > tr > td, .table-responsive > .table > tfoot > tr > td { white-space: nowrap; } .table-responsive > .table-bordered { border: 0; } .table-responsive > .table-bordered > thead > tr > th:first-child, .table-responsive > .table-bordered > tbody > tr > th:first-child, .table-responsive > .table-bordered > tfoot > tr > th:first-child, .table-responsive > .table-bordered > thead > tr > td:first-child, .table-responsive > .table-bordered > tbody > tr > td:first-child, .table-responsive > .table-bordered > tfoot > tr > td:first-child { border-left: 0; } .table-responsive > .table-bordered > thead > tr > th:last-child, .table-responsive > .table-bordered > tbody > tr > th:last-child, .table-responsive > .table-bordered > tfoot > tr > th:last-child, .table-responsive > .table-bordered > thead > tr > td:last-child, .table-responsive > .table-bordered > tbody > tr > td:last-child, .table-responsive > .table-bordered > tfoot > tr > td:last-child { border-right: 0; } .table-responsive > .table-bordered > tbody > tr:last-child > th, .table-responsive > .table-bordered > tfoot > tr:last-child > th, .table-responsive > .table-bordered > tbody > tr:last-child > td, .table-responsive > .table-bordered > tfoot > tr:last-child > td { border-bottom: 0; } } fieldset { padding: 0; margin: 0; border: 0; min-width: 0; } legend { display: block; width: 100%; padding: 0; margin-bottom: 18px; font-size: 19.5px; line-height: inherit; color: #333333; border: 0; border-bottom: 1px solid #e5e5e5; } label { display: inline-block; max-width: 100%; margin-bottom: 5px; font-weight: bold; } input[type="search"] { -webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box; } input[type="radio"], input[type="checkbox"] { margin: 4px 0 0; margin-top: 1px \9; line-height: normal; } input[type="file"] { display: block; } input[type="range"] { display: block; width: 100%; } select[multiple], select[size] { height: auto; } input[type="file"]:focus, input[type="radio"]:focus, input[type="checkbox"]:focus { outline: 5px auto -webkit-focus-ring-color; outline-offset: -2px; } output { display: block; padding-top: 7px; font-size: 13px; line-height: 1.42857143; color: #555555; } .form-control { display: block; width: 100%; height: 32px; padding: 6px 12px; font-size: 13px; line-height: 1.42857143; color: #555555; background-color: #fff; background-image: none; border: 1px solid #ccc; border-radius: 2px; -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s; -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s; transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s; } .form-control:focus { border-color: #66afe9; outline: 0; -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6); box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6); } .form-control::-moz-placeholder { color: #999; opacity: 1; } .form-control:-ms-input-placeholder { color: #999; } .form-control::-webkit-input-placeholder { color: #999; } .form-control::-ms-expand { border: 0; background-color: transparent; } .form-control[disabled], .form-control[readonly], fieldset[disabled] .form-control { background-color: #eeeeee; opacity: 1; } .form-control[disabled], fieldset[disabled] .form-control { cursor: not-allowed; } textarea.form-control { height: auto; } input[type="search"] { -webkit-appearance: none; } @media screen and (-webkit-min-device-pixel-ratio: 0) { input[type="date"].form-control, input[type="time"].form-control, input[type="datetime-local"].form-control, input[type="month"].form-control { line-height: 32px; } input[type="date"].input-sm, input[type="time"].input-sm, input[type="datetime-local"].input-sm, input[type="month"].input-sm, .input-group-sm input[type="date"], .input-group-sm input[type="time"], .input-group-sm input[type="datetime-local"], .input-group-sm input[type="month"] { line-height: 30px; } input[type="date"].input-lg, input[type="time"].input-lg, input[type="datetime-local"].input-lg, input[type="month"].input-lg, .input-group-lg input[type="date"], .input-group-lg input[type="time"], .input-group-lg input[type="datetime-local"], .input-group-lg input[type="month"] { line-height: 45px; } } .form-group { margin-bottom: 15px; } .radio, .checkbox { position: relative; display: block; margin-top: 10px; margin-bottom: 10px; } .radio label, .checkbox label { min-height: 18px; padding-left: 20px; margin-bottom: 0; font-weight: normal; cursor: pointer; } .radio input[type="radio"], .radio-inline input[type="radio"], .checkbox input[type="checkbox"], .checkbox-inline input[type="checkbox"] { position: absolute; margin-left: -20px; margin-top: 4px \9; } .radio + .radio, .checkbox + .checkbox { margin-top: -5px; } .radio-inline, .checkbox-inline { position: relative; display: inline-block; padding-left: 20px; margin-bottom: 0; vertical-align: middle; font-weight: normal; cursor: pointer; } .radio-inline + .radio-inline, .checkbox-inline + .checkbox-inline { margin-top: 0; margin-left: 10px; } input[type="radio"][disabled], input[type="checkbox"][disabled], input[type="radio"].disabled, input[type="checkbox"].disabled, fieldset[disabled] input[type="radio"], fieldset[disabled] input[type="checkbox"] { cursor: not-allowed; } .radio-inline.disabled, .checkbox-inline.disabled, fieldset[disabled] .radio-inline, fieldset[disabled] .checkbox-inline { cursor: not-allowed; } .radio.disabled label, .checkbox.disabled label, fieldset[disabled] .radio label, fieldset[disabled] .checkbox label { cursor: not-allowed; } .form-control-static { padding-top: 7px; padding-bottom: 7px; margin-bottom: 0; min-height: 31px; } .form-control-static.input-lg, .form-control-static.input-sm { padding-left: 0; padding-right: 0; } .input-sm { height: 30px; padding: 5px 10px; font-size: 12px; line-height: 1.5; border-radius: 1px; } select.input-sm { height: 30px; line-height: 30px; } textarea.input-sm, select[multiple].input-sm { height: auto; } .form-group-sm .form-control { height: 30px; padding: 5px 10px; font-size: 12px; line-height: 1.5; border-radius: 1px; } .form-group-sm select.form-control { height: 30px; line-height: 30px; } .form-group-sm textarea.form-control, .form-group-sm select[multiple].form-control { height: auto; } .form-group-sm .form-control-static { height: 30px; min-height: 30px; padding: 6px 10px; font-size: 12px; line-height: 1.5; } .input-lg { height: 45px; padding: 10px 16px; font-size: 17px; line-height: 1.3333333; border-radius: 3px; } select.input-lg { height: 45px; line-height: 45px; } textarea.input-lg, select[multiple].input-lg { height: auto; } .form-group-lg .form-control { height: 45px; padding: 10px 16px; font-size: 17px; line-height: 1.3333333; border-radius: 3px; } .form-group-lg select.form-control { height: 45px; line-height: 45px; } .form-group-lg textarea.form-control, .form-group-lg select[multiple].form-control { height: auto; } .form-group-lg .form-control-static { height: 45px; min-height: 35px; padding: 11px 16px; font-size: 17px; line-height: 1.3333333; } .has-feedback { position: relative; } .has-feedback .form-control { padding-right: 40px; } .form-control-feedback { position: absolute; top: 0; right: 0; z-index: 2; display: block; width: 32px; height: 32px; line-height: 32px; text-align: center; pointer-events: none; } .input-lg + .form-control-feedback, .input-group-lg + .form-control-feedback, .form-group-lg .form-control + .form-control-feedback { width: 45px; height: 45px; line-height: 45px; } .input-sm + .form-control-feedback, .input-group-sm + .form-control-feedback, .form-group-sm .form-control + .form-control-feedback { width: 30px; height: 30px; line-height: 30px; } .has-success .help-block, .has-success .control-label, .has-success .radio, .has-success .checkbox, .has-success .radio-inline, .has-success .checkbox-inline, .has-success.radio label, .has-success.checkbox label, .has-success.radio-inline label, .has-success.checkbox-inline label { color: #3c763d; } .has-success .form-control { border-color: #3c763d; -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); } .has-success .form-control:focus { border-color: #2b542c; -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #67b168; box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #67b168; } .has-success .input-group-addon { color: #3c763d; border-color: #3c763d; background-color: #dff0d8; } .has-success .form-control-feedback { color: #3c763d; } .has-warning .help-block, .has-warning .control-label, .has-warning .radio, .has-warning .checkbox, .has-warning .radio-inline, .has-warning .checkbox-inline, .has-warning.radio label, .has-warning.checkbox label, .has-warning.radio-inline label, .has-warning.checkbox-inline label { color: #8a6d3b; } .has-warning .form-control { border-color: #8a6d3b; -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); } .has-warning .form-control:focus { border-color: #66512c; -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #c0a16b; box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #c0a16b; } .has-warning .input-group-addon { color: #8a6d3b; border-color: #8a6d3b; background-color: #fcf8e3; } .has-warning .form-control-feedback { color: #8a6d3b; } .has-error .help-block, .has-error .control-label, .has-error .radio, .has-error .checkbox, .has-error .radio-inline, .has-error .checkbox-inline, .has-error.radio label, .has-error.checkbox label, .has-error.radio-inline label, .has-error.checkbox-inline label { color: #a94442; } .has-error .form-control { border-color: #a94442; -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); } .has-error .form-control:focus { border-color: #843534; -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #ce8483; box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075), 0 0 6px #ce8483; } .has-error .input-group-addon { color: #a94442; border-color: #a94442; background-color: #f2dede; } .has-error .form-control-feedback { color: #a94442; } .has-feedback label ~ .form-control-feedback { top: 23px; } .has-feedback label.sr-only ~ .form-control-feedback { top: 0; } .help-block { display: block; margin-top: 5px; margin-bottom: 10px; color: #404040; } @media (min-width: 600px { .form-inline .form-group { display: inline-block; margin-bottom: 0; vertical-align: middle; } .form-inline .form-control { display: inline-block; width: auto; vertical-align: middle; } .form-inline .form-control-static { display: inline-block; } .form-inline .input-group { display: inline-table; vertical-align: middle; } .form-inline .input-group .input-group-addon, .form-inline .input-group .input-group-btn, .form-inline .input-group .form-control { width: auto; } .form-inline .input-group > .form-control { width: 100%; } .form-inline .control-label { margin-bottom: 0; vertical-align: middle; } .form-inline .radio, .form-inline .checkbox { display: inline-block; margin-top: 0; margin-bottom: 0; vertical-align: middle; } .form-inline .radio label, .form-inline .checkbox label { padding-left: 0; } .form-inline .radio input[type="radio"], .form-inline .checkbox input[type="checkbox"] { position: relative; margin-left: 0; } .form-inline .has-feedback .form-control-feedback { top: 0; } } .form-horizontal .radio, .form-horizontal .checkbox, .form-horizontal .radio-inline, .form-horizontal .checkbox-inline { margin-top: 0; margin-bottom: 0; padding-top: 7px; } .form-horizontal .radio, .form-horizontal .checkbox { min-height: 25px; } .form-horizontal .form-group { margin-left: 0px; margin-right: 0px; } @media (min-width: 600px { .form-horizontal .control-label { text-align: right; margin-bottom: 0; padding-top: 7px; } } .form-horizontal .has-feedback .form-control-feedback { right: 0px; } @media (min-width: 600px { .form-horizontal .form-group-lg .control-label { padding-top: 11px; font-size: 17px; } } @media (min-width: 600px { .form-horizontal .form-group-sm .control-label { padding-top: 6px; font-size: 12px; } } .btn { display: inline-block; margin-bottom: 0; font-weight: normal; text-align: center; vertical-align: middle; touch-action: manipulation; cursor: pointer; background-image: none; border: 1px solid transparent; white-space: nowrap; padding: 6px 12px; font-size: 13px; line-height: 1.42857143; border-radius: 2px; -webkit-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; } .btn:focus, .btn:active:focus, .btn.active:focus, .btn.focus, .btn:active.focus, .btn.active.focus { outline: 5px auto -webkit-focus-ring-color; outline-offset: -2px; } .btn:hover, .btn:focus, .btn.focus { color: #333; text-decoration: none; } .btn:active, .btn.active { outline: 0; background-image: none; -webkit-box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125); box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125); } .btn.disabled, .btn[disabled], fieldset[disabled] .btn { cursor: not-allowed; opacity: 0.65; filter: alpha(opacity=65); -webkit-box-shadow: none; box-shadow: none; } a.btn.disabled, fieldset[disabled] a.btn { pointer-events: none; } .btn-default { color: #333; background-color: #fff; border-color: #ccc; } .btn-default:focus, .btn-default.focus { color: #333; background-color: #e6e6e6; border-color: #8c8c8c; } .btn-default:hover { color: #333; background-color: #e6e6e6; border-color: #adadad; } .btn-default:active, .btn-default.active, .open > .dropdown-toggle.btn-default { color: #333; background-color: #e6e6e6; border-color: #adadad; } .btn-default:active:hover, .btn-default.active:hover, .open > .dropdown-toggle.btn-default:hover, .btn-default:active:focus, .btn-default.active:focus, .open > .dropdown-toggle.btn-default:focus, .btn-default:active.focus, .btn-default.active.focus, .open > .dropdown-toggle.btn-default.focus { color: #333; background-color: #d4d4d4; border-color: #8c8c8c; } .btn-default:active, .btn-default.active, .open > .dropdown-toggle.btn-default { background-image: none; } .btn-default.disabled:hover, .btn-default[disabled]:hover, fieldset[disabled] .btn-default:hover, .btn-default.disabled:focus, .btn-default[disabled]:focus, fieldset[disabled] .btn-default:focus, .btn-default.disabled.focus, .btn-default[disabled].focus, fieldset[disabled] .btn-default.focus { background-color: #fff; border-color: #ccc; } .btn-default .badge { color: #fff; background-color: #333; } .btn-primary { color: #fff; background-color: #337ab7; border-color: #2e6da4; } .btn-primary:focus, .btn-primary.focus { color: #fff; background-color: #286090; border-color: #122b40; } .btn-primary:hover { color: #fff; background-color: #286090; border-color: #204d74; } .btn-primary:active, .btn-primary.active, .open > .dropdown-toggle.btn-primary { color: #fff; background-color: #286090; border-color: #204d74; } .btn-primary:active:hover, .btn-primary.active:hover, .open > .dropdown-toggle.btn-primary:hover, .btn-primary:active:focus, .btn-primary.active:focus, .open > .dropdown-toggle.btn-primary:focus, .btn-primary:active.focus, .btn-primary.active.focus, .open > .dropdown-toggle.btn-primary.focus { color: #fff; background-color: #204d74; border-color: #122b40; } .btn-primary:active, .btn-primary.active, .open > .dropdown-toggle.btn-primary { background-image: none; } .btn-primary.disabled:hover, .btn-primary[disabled]:hover, fieldset[disabled] .btn-primary:hover, .btn-primary.disabled:focus, .btn-primary[disabled]:focus, fieldset[disabled] .btn-primary:focus, .btn-primary.disabled.focus, .btn-primary[disabled].focus, fieldset[disabled] .btn-primary.focus { background-color: #337ab7; border-color: #2e6da4; } .btn-primary .badge { color: #337ab7; background-color: #fff; } .btn-success { color: #fff; background-color: #5cb85c; border-color: #4cae4c; } .btn-success:focus, .btn-success.focus { color: #fff; background-color: #449d44; border-color: #255625; } .btn-success:hover { color: #fff; background-color: #449d44; border-color: #398439; } .btn-success:active, .btn-success.active, .open > .dropdown-toggle.btn-success { color: #fff; background-color: #449d44; border-color: #398439; } .btn-success:active:hover, .btn-success.active:hover, .open > .dropdown-toggle.btn-success:hover, .btn-success:active:focus, .btn-success.active:focus, .open > .dropdown-toggle.btn-success:focus, .btn-success:active.focus, .btn-success.active.focus, .open > .dropdown-toggle.btn-success.focus { color: #fff; background-color: #398439; border-color: #255625; } .btn-success:active, .btn-success.active, .open > .dropdown-toggle.btn-success { background-image: none; } .btn-success.disabled:hover, .btn-success[disabled]:hover, fieldset[disabled] .btn-success:hover, .btn-success.disabled:focus, .btn-success[disabled]:focus, fieldset[disabled] .btn-success:focus, .btn-success.disabled.focus, .btn-success[disabled].focus, fieldset[disabled] .btn-success.focus { background-color: #5cb85c; border-color: #4cae4c; } .btn-success .badge { color: #5cb85c; background-color: #fff; } .btn-info { color: #fff; background-color: #5bc0de; border-color: #46b8da; } .btn-info:focus, .btn-info.focus { color: #fff; background-color: #31b0d5; border-color: #1b6d85; } .btn-info:hover { color: #fff; background-color: #31b0d5; border-color: #269abc; } .btn-info:active, .btn-info.active, .open > .dropdown-toggle.btn-info { color: #fff; background-color: #31b0d5; border-color: #269abc; } .btn-info:active:hover, .btn-info.active:hover, .open > .dropdown-toggle.btn-info:hover, .btn-info:active:focus, .btn-info.active:focus, .open > .dropdown-toggle.btn-info:focus, .btn-info:active.focus, .btn-info.active.focus, .open > .dropdown-toggle.btn-info.focus { color: #fff; background-color: #269abc; border-color: #1b6d85; } .btn-info:active, .btn-info.active, .open > .dropdown-toggle.btn-info { background-image: none; } .btn-info.disabled:hover, .btn-info[disabled]:hover, fieldset[disabled] .btn-info:hover, .btn-info.disabled:focus, .btn-info[disabled]:focus, fieldset[disabled] .btn-info:focus, .btn-info.disabled.focus, .btn-info[disabled].focus, fieldset[disabled] .btn-info.focus { background-color: #5bc0de; border-color: #46b8da; } .btn-info .badge { color: #5bc0de; background-color: #fff; } .btn-warning { color: #fff; background-color: #f0ad4e; border-color: #eea236; } .btn-warning:focus, .btn-warning.focus { color: #fff; background-color: #ec971f; border-color: #985f0d; } .btn-warning:hover { color: #fff; background-color: #ec971f; border-color: #d58512; } .btn-warning:active, .btn-warning.active, .open > .dropdown-toggle.btn-warning { color: #fff; background-color: #ec971f; border-color: #d58512; } .btn-warning:active:hover, .btn-warning.active:hover, .open > .dropdown-toggle.btn-warning:hover, .btn-warning:active:focus, .btn-warning.active:focus, .open > .dropdown-toggle.btn-warning:focus, .btn-warning:active.focus, .btn-warning.active.focus, .open > .dropdown-toggle.btn-warning.focus { color: #fff; background-color: #d58512; border-color: #985f0d; } .btn-warning:active, .btn-warning.active, .open > .dropdown-toggle.btn-warning { background-image: none; } .btn-warning.disabled:hover, .btn-warning[disabled]:hover, fieldset[disabled] .btn-warning:hover, .btn-warning.disabled:focus, .btn-warning[disabled]:focus, fieldset[disabled] .btn-warning:focus, .btn-warning.disabled.focus, .btn-warning[disabled].focus, fieldset[disabled] .btn-warning.focus { background-color: #f0ad4e; border-color: #eea236; } .btn-warning .badge { color: #f0ad4e; background-color: #fff; } .btn-danger { color: #fff; background-color: #d9534f; border-color: #d43f3a; } .btn-danger:focus, .btn-danger.focus { color: #fff; background-color: #c9302c; border-color: #761c19; } .btn-danger:hover { color: #fff; background-color: #c9302c; border-color: #ac2925; } .btn-danger:active, .btn-danger.active, .open > .dropdown-toggle.btn-danger { color: #fff; background-color: #c9302c; border-color: #ac2925; } .btn-danger:active:hover, .btn-danger.active:hover, .open > .dropdown-toggle.btn-danger:hover, .btn-danger:active:focus, .btn-danger.active:focus, .open > .dropdown-toggle.btn-danger:focus, .btn-danger:active.focus, .btn-danger.active.focus, .open > .dropdown-toggle.btn-danger.focus { color: #fff; background-color: #ac2925; border-color: #761c19; } .btn-danger:active, .btn-danger.active, .open > .dropdown-toggle.btn-danger { background-image: none; } .btn-danger.disabled:hover, .btn-danger[disabled]:hover, fieldset[disabled] .btn-danger:hover, .btn-danger.disabled:focus, .btn-danger[disabled]:focus, fieldset[disabled] .btn-danger:focus, .btn-danger.disabled.focus, .btn-danger[disabled].focus, fieldset[disabled] .btn-danger.focus { background-color: #d9534f; border-color: #d43f3a; } .btn-danger .badge { color: #d9534f; background-color: #fff; } .btn-link { color: #337ab7; font-weight: normal; border-radius: 0; } .btn-link, .btn-link:active, .btn-link.active, .btn-link[disabled], fieldset[disabled] .btn-link { background-color: transparent; -webkit-box-shadow: none; box-shadow: none; } .btn-link, .btn-link:hover, .btn-link:focus, .btn-link:active { border-color: transparent; } .btn-link:hover, .btn-link:focus { color: #23527c; text-decoration: underline; background-color: transparent; } .btn-link[disabled]:hover, fieldset[disabled] .btn-link:hover, .btn-link[disabled]:focus, fieldset[disabled] .btn-link:focus { color: #777777; text-decoration: none; } .btn-lg, .btn-group-lg > .btn { padding: 10px 16px; font-size: 17px; line-height: 1.3333333; border-radius: 3px; } .btn-sm, .btn-group-sm > .btn { padding: 5px 10px; font-size: 12px; line-height: 1.5; border-radius: 1px; } .btn-xs, .btn-group-xs > .btn { padding: 1px 5px; font-size: 12px; line-height: 1.5; border-radius: 1px; } .btn-block { display: block; width: 100%; } .btn-block + .btn-block { margin-top: 5px; } input[type="submit"].btn-block, input[type="reset"].btn-block, input[type="button"].btn-block { width: 100%; } .fade { opacity: 0; -webkit-transition: opacity 0.15s linear; -o-transition: opacity 0.15s linear; transition: opacity 0.15s linear; } .fade.in { opacity: 1; } .collapse { display: none; } .collapse.in { display: block; } tr.collapse.in { display: table-row; } tbody.collapse.in { display: table-row-group; } .collapsing { position: relative; height: 0; overflow: hidden; -webkit-transition-property: height, visibility; transition-property: height, visibility; -webkit-transition-duration: 0.35s; transition-duration: 0.35s; -webkit-transition-timing-function: ease; transition-timing-function: ease; } .caret { display: inline-block; width: 0; height: 0; margin-left: 2px; vertical-align: middle; border-top: 4px dashed; border-top: 4px solid \9; border-right: 4px solid transparent; border-left: 4px solid transparent; } .dropup, .dropdown { position: relative; } .dropdown-toggle:focus { outline: 0; } .dropdown-menu { position: absolute; top: 100%; left: 0; z-index: 1000; display: none; float: left; min-width: 160px; padding: 5px 0; margin: 2px 0 0; list-style: none; font-size: 13px; text-align: left; background-color: #fff; border: 1px solid #ccc; border: 1px solid rgba(0, 0, 0, 0.15); border-radius: 2px; -webkit-box-shadow: 0 6px 12px rgba(0, 0, 0, 0.175); box-shadow: 0 6px 12px rgba(0, 0, 0, 0.175); background-clip: padding-box; } .dropdown-menu.pull-right { right: 0; left: auto; } .dropdown-menu .divider { height: 1px; margin: 8px 0; overflow: hidden; background-color: #e5e5e5; } .dropdown-menu > li > a { display: block; padding: 3px 20px; clear: both; font-weight: normal; line-height: 1.42857143; color: #333333; white-space: nowrap; } .dropdown-menu > li > a:hover, .dropdown-menu > li > a:focus { text-decoration: none; color: #262626; background-color: #f5f5f5; } .dropdown-menu > .active > a, .dropdown-menu > .active > a:hover, .dropdown-menu > .active > a:focus { color: #fff; text-decoration: none; outline: 0; background-color: #337ab7; } .dropdown-menu > .disabled > a, .dropdown-menu > .disabled > a:hover, .dropdown-menu > .disabled > a:focus { color: #777777; } .dropdown-menu > .disabled > a:hover, .dropdown-menu > .disabled > a:focus { text-decoration: none; background-color: transparent; background-image: none; filter: progid:DXImageTransform.Microsoft.gradient(enabled = false); cursor: not-allowed; } .open > .dropdown-menu { display: block; } .open > a { outline: 0; } .dropdown-menu-right { left: auto; right: 0; } .dropdown-menu-left { left: 0; right: auto; } .dropdown-header { display: block; padding: 3px 20px; font-size: 12px; line-height: 1.42857143; color: #777777; white-space: nowrap; } .dropdown-backdrop { position: fixed; left: 0; right: 0; bottom: 0; top: 0; z-index: 990; } .pull-right > .dropdown-menu { right: 0; left: auto; } .dropup .caret, .navbar-fixed-bottom .dropdown .caret { border-top: 0; border-bottom: 4px dashed; border-bottom: 4px solid \9; content: ""; } .dropup .dropdown-menu, .navbar-fixed-bottom .dropdown .dropdown-menu { top: auto; bottom: 100%; margin-bottom: 2px; } @media (min-width: 541px) { .navbar-right .dropdown-menu { left: auto; right: 0; } .navbar-right .dropdown-menu-left { left: 0; right: auto; } } .btn-group, .btn-group-vertical { position: relative; display: inline-block; vertical-align: middle; } .btn-group > .btn, .btn-group-vertical > .btn { position: relative; float: left; } .btn-group > .btn:hover, .btn-group-vertical > .btn:hover, .btn-group > .btn:focus, .btn-group-vertical > .btn:focus, .btn-group > .btn:active, .btn-group-vertical > .btn:active, .btn-group > .btn.active, .btn-group-vertical > .btn.active { z-index: 2; } .btn-group .btn + .btn, .btn-group .btn + .btn-group, .btn-group .btn-group + .btn, .btn-group .btn-group + .btn-group { margin-left: -1px; } .btn-toolbar { margin-left: -5px; } .btn-toolbar .btn, .btn-toolbar .btn-group, .btn-toolbar .input-group { float: left; } .btn-toolbar > .btn, .btn-toolbar > .btn-group, .btn-toolbar > .input-group { margin-left: 5px; } .btn-group > .btn:not(:first-child):not(:last-child):not(.dropdown-toggle) { border-radius: 0; } .btn-group > .btn:first-child { margin-left: 0; } .btn-group > .btn:first-child:not(:last-child):not(.dropdown-toggle) { border-bottom-right-radius: 0; border-top-right-radius: 0; } .btn-group > .btn:last-child:not(:first-child), .btn-group > .dropdown-toggle:not(:first-child) { border-bottom-left-radius: 0; border-top-left-radius: 0; } .btn-group > .btn-group { float: left; } .btn-group > .btn-group:not(:first-child):not(:last-child) > .btn { border-radius: 0; } .btn-group > .btn-group:first-child:not(:last-child) > .btn:last-child, .btn-group > .btn-group:first-child:not(:last-child) > .dropdown-toggle { border-bottom-right-radius: 0; border-top-right-radius: 0; } .btn-group > .btn-group:last-child:not(:first-child) > .btn:first-child { border-bottom-left-radius: 0; border-top-left-radius: 0; } .btn-group .dropdown-toggle:active, .btn-group.open .dropdown-toggle { outline: 0; } .btn-group > .btn + .dropdown-toggle { padding-left: 8px; padding-right: 8px; } .btn-group > .btn-lg + .dropdown-toggle { padding-left: 12px; padding-right: 12px; } .btn-group.open .dropdown-toggle { -webkit-box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125); box-shadow: inset 0 3px 5px rgba(0, 0, 0, 0.125); } .btn-group.open .dropdown-toggle.btn-link { -webkit-box-shadow: none; box-shadow: none; } .btn .caret { margin-left: 0; } .btn-lg .caret { border-width: 5px 5px 0; border-bottom-width: 0; } .dropup .btn-lg .caret { border-width: 0 5px 5px; } .btn-group-vertical > .btn, .btn-group-vertical > .btn-group, .btn-group-vertical > .btn-group > .btn { display: block; float: none; width: 100%; max-width: 100%; } .btn-group-vertical > .btn-group > .btn { float: none; } .btn-group-vertical > .btn + .btn, .btn-group-vertical > .btn + .btn-group, .btn-group-vertical > .btn-group + .btn, .btn-group-vertical > .btn-group + .btn-group { margin-top: -1px; margin-left: 0; } .btn-group-vertical > .btn:not(:first-child):not(:last-child) { border-radius: 0; } .btn-group-vertical > .btn:first-child:not(:last-child) { border-top-right-radius: 2px; border-top-left-radius: 2px; border-bottom-right-radius: 0; border-bottom-left-radius: 0; } .btn-group-vertical > .btn:last-child:not(:first-child) { border-top-right-radius: 0; border-top-left-radius: 0; border-bottom-right-radius: 2px; border-bottom-left-radius: 2px; } .btn-group-vertical > .btn-group:not(:first-child):not(:last-child) > .btn { border-radius: 0; } .btn-group-vertical > .btn-group:first-child:not(:last-child) > .btn:last-child, .btn-group-vertical > .btn-group:first-child:not(:last-child) > .dropdown-toggle { border-bottom-right-radius: 0; border-bottom-left-radius: 0; } .btn-group-vertical > .btn-group:last-child:not(:first-child) > .btn:first-child { border-top-right-radius: 0; border-top-left-radius: 0; } .btn-group-justified { display: table; width: 100%; table-layout: fixed; border-collapse: separate; } .btn-group-justified > .btn, .btn-group-justified > .btn-group { float: none; display: table-cell; width: 1%; } .btn-group-justified > .btn-group .btn { width: 100%; } .btn-group-justified > .btn-group .dropdown-menu { left: auto; } [data-toggle="buttons"] > .btn input[type="radio"], [data-toggle="buttons"] > .btn-group > .btn input[type="radio"], [data-toggle="buttons"] > .btn input[type="checkbox"], [data-toggle="buttons"] > .btn-group > .btn input[type="checkbox"] { position: absolute; clip: rect(0, 0, 0, 0); pointer-events: none; } .input-group { position: relative; display: table; border-collapse: separate; } .input-group[class*="col-"] { float: none; padding-left: 0; padding-right: 0; } .input-group .form-control { position: relative; z-index: 2; float: left; width: 100%; margin-bottom: 0; } .input-group .form-control:focus { z-index: 3; } .input-group-lg > .form-control, .input-group-lg > .input-group-addon, .input-group-lg > .input-group-btn > .btn { height: 45px; padding: 10px 16px; font-size: 17px; line-height: 1.3333333; border-radius: 3px; } select.input-group-lg > .form-control, select.input-group-lg > .input-group-addon, select.input-group-lg > .input-group-btn > .btn { height: 45px; line-height: 45px; } textarea.input-group-lg > .form-control, textarea.input-group-lg > .input-group-addon, textarea.input-group-lg > .input-group-btn > .btn, select[multiple].input-group-lg > .form-control, select[multiple].input-group-lg > .input-group-addon, select[multiple].input-group-lg > .input-group-btn > .btn { height: auto; } .input-group-sm > .form-control, .input-group-sm > .input-group-addon, .input-group-sm > .input-group-btn > .btn { height: 30px; padding: 5px 10px; font-size: 12px; line-height: 1.5; border-radius: 1px; } select.input-group-sm > .form-control, select.input-group-sm > .input-group-addon, select.input-group-sm > .input-group-btn > .btn { height: 30px; line-height: 30px; } textarea.input-group-sm > .form-control, textarea.input-group-sm > .input-group-addon, textarea.input-group-sm > .input-group-btn > .btn, select[multiple].input-group-sm > .form-control, select[multiple].input-group-sm > .input-group-addon, select[multiple].input-group-sm > .input-group-btn > .btn { height: auto; } .input-group-addon, .input-group-btn, .input-group .form-control { display: table-cell; } .input-group-addon:not(:first-child):not(:last-child), .input-group-btn:not(:first-child):not(:last-child), .input-group .form-control:not(:first-child):not(:last-child) { border-radius: 0; } .input-group-addon, .input-group-btn { width: 1%; white-space: nowrap; vertical-align: middle; } .input-group-addon { padding: 6px 12px; font-size: 13px; font-weight: normal; line-height: 1; color: #555555; text-align: center; background-color: #eeeeee; border: 1px solid #ccc; border-radius: 2px; } .input-group-addon.input-sm { padding: 5px 10px; font-size: 12px; border-radius: 1px; } .input-group-addon.input-lg { padding: 10px 16px; font-size: 17px; border-radius: 3px; } .input-group-addon input[type="radio"], .input-group-addon input[type="checkbox"] { margin-top: 0; } .input-group .form-control:first-child, .input-group-addon:first-child, .input-group-btn:first-child > .btn, .input-group-btn:first-child > .btn-group > .btn, .input-group-btn:first-child > .dropdown-toggle, .input-group-btn:last-child > .btn:not(:last-child):not(.dropdown-toggle), .input-group-btn:last-child > .btn-group:not(:last-child) > .btn { border-bottom-right-radius: 0; border-top-right-radius: 0; } .input-group-addon:first-child { border-right: 0; } .input-group .form-control:last-child, .input-group-addon:last-child, .input-group-btn:last-child > .btn, .input-group-btn:last-child > .btn-group > .btn, .input-group-btn:last-child > .dropdown-toggle, .input-group-btn:first-child > .btn:not(:first-child), .input-group-btn:first-child > .btn-group:not(:first-child) > .btn { border-bottom-left-radius: 0; border-top-left-radius: 0; } .input-group-addon:last-child { border-left: 0; } .input-group-btn { position: relative; font-size: 0; white-space: nowrap; } .input-group-btn > .btn { position: relative; } .input-group-btn > .btn + .btn { margin-left: -1px; } .input-group-btn > .btn:hover, .input-group-btn > .btn:focus, .input-group-btn > .btn:active { z-index: 2; } .input-group-btn:first-child > .btn, .input-group-btn:first-child > .btn-group { margin-right: -1px; } .input-group-btn:last-child > .btn, .input-group-btn:last-child > .btn-group { z-index: 2; margin-left: -1px; } .nav { margin-bottom: 0; padding-left: 0; list-style: none; } .nav > li { position: relative; display: block; } .nav > li > a { position: relative; display: block; padding: 10px 15px; } .nav > li > a:hover, .nav > li > a:focus { text-decoration: none; background-color: #eeeeee; } .nav > li.disabled > a { color: #777777; } .nav > li.disabled > a:hover, .nav > li.disabled > a:focus { color: #777777; text-decoration: none; background-color: transparent; cursor: not-allowed; } .nav .open > a, .nav .open > a:hover, .nav .open > a:focus { background-color: #eeeeee; border-color: #337ab7; } .nav .nav-divider { height: 1px; margin: 8px 0; overflow: hidden; background-color: #e5e5e5; } .nav > li > a > img { max-width: none; } .nav-tabs { border-bottom: 1px solid #ddd; } .nav-tabs > li { float: left; margin-bottom: -1px; } .nav-tabs > li > a { margin-right: 2px; line-height: 1.42857143; border: 1px solid transparent; border-radius: 2px 2px 0 0; } .nav-tabs > li > a:hover { border-color: #eeeeee #eeeeee #ddd; } .nav-tabs > li.active > a, .nav-tabs > li.active > a:hover, .nav-tabs > li.active > a:focus { color: #555555; background-color: #fff; border: 1px solid #ddd; border-bottom-color: transparent; cursor: default; } .nav-tabs.nav-justified { width: 100%; border-bottom: 0; } .nav-tabs.nav-justified > li { float: none; } .nav-tabs.nav-justified > li > a { text-align: center; margin-bottom: 5px; } .nav-tabs.nav-justified > .dropdown .dropdown-menu { top: auto; left: auto; } @media (min-width: 600px { .nav-tabs.nav-justified > li { display: table-cell; width: 1%; } .nav-tabs.nav-justified > li > a { margin-bottom: 0; } } .nav-tabs.nav-justified > li > a { margin-right: 0; border-radius: 2px; } .nav-tabs.nav-justified > .active > a, .nav-tabs.nav-justified > .active > a:hover, .nav-tabs.nav-justified > .active > a:focus { border: 1px solid #ddd; } @media (min-width: 600px { .nav-tabs.nav-justified > li > a { border-bottom: 1px solid #ddd; border-radius: 2px 2px 0 0; } .nav-tabs.nav-justified > .active > a, .nav-tabs.nav-justified > .active > a:hover, .nav-tabs.nav-justified > .active > a:focus { border-bottom-color: #fff; } } .nav-pills > li { float: left; } .nav-pills > li > a { border-radius: 2px; } .nav-pills > li + li { margin-left: 2px; } .nav-pills > li.active > a, .nav-pills > li.active > a:hover, .nav-pills > li.active > a:focus { color: #fff; background-color: #337ab7; } .nav-stacked > li { float: none; } .nav-stacked > li + li { margin-top: 2px; margin-left: 0; } .nav-justified { width: 100%; } .nav-justified > li { float: none; } .nav-justified > li > a { text-align: center; margin-bottom: 5px; } .nav-justified > .dropdown .dropdown-menu { top: auto; left: auto; } @media (min-width: 600px { .nav-justified > li { display: table-cell; width: 1%; } .nav-justified > li > a { margin-bottom: 0; } } .nav-tabs-justified { border-bottom: 0; } .nav-tabs-justified > li > a { margin-right: 0; border-radius: 2px; } .nav-tabs-justified > .active > a, .nav-tabs-justified > .active > a:hover, .nav-tabs-justified > .active > a:focus { border: 1px solid #ddd; } @media (min-width: 600px { .nav-tabs-justified > li > a { border-bottom: 1px solid #ddd; border-radius: 2px 2px 0 0; } .nav-tabs-justified > .active > a, .nav-tabs-justified > .active > a:hover, .nav-tabs-justified > .active > a:focus { border-bottom-color: #fff; } } .tab-content > .tab-pane { display: none; } .tab-content > .active { display: block; } .nav-tabs .dropdown-menu { margin-top: -1px; border-top-right-radius: 0; border-top-left-radius: 0; } .navbar { position: relative; min-height: 30px; margin-bottom: 18px; border: 1px solid transparent; } @media (min-width: 541px) { .navbar { border-radius: 2px; } } @media (min-width: 541px) { .navbar-header { float: left; } } .navbar-collapse { overflow-x: visible; padding-right: 0px; padding-left: 0px; border-top: 1px solid transparent; box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1); -webkit-overflow-scrolling: touch; } .navbar-collapse.in { overflow-y: auto; } @media (min-width: 541px) { .navbar-collapse { width: auto; border-top: 0; box-shadow: none; } .navbar-collapse.collapse { display: block !important; height: auto !important; padding-bottom: 0; overflow: visible !important; } .navbar-collapse.in { overflow-y: visible; } .navbar-fixed-top .navbar-collapse, .navbar-static-top .navbar-collapse, .navbar-fixed-bottom .navbar-collapse { padding-left: 0; padding-right: 0; } } .navbar-fixed-top .navbar-collapse, .navbar-fixed-bottom .navbar-collapse { max-height: 340px; } @media (max-device-width: 540px) and (orientation: landscape) { .navbar-fixed-top .navbar-collapse, .navbar-fixed-bottom .navbar-collapse { max-height: 200px; } } .container > .navbar-header, .container-fluid > .navbar-header, .container > .navbar-collapse, .container-fluid > .navbar-collapse { margin-right: 0px; margin-left: 0px; } @media (min-width: 541px) { .container > .navbar-header, .container-fluid > .navbar-header, .container > .navbar-collapse, .container-fluid > .navbar-collapse { margin-right: 0; margin-left: 0; } } .navbar-static-top { z-index: 1000; border-width: 0 0 1px; } @media (min-width: 541px) { .navbar-static-top { border-radius: 0; } } .navbar-fixed-top, .navbar-fixed-bottom { position: fixed; right: 0; left: 0; z-index: 1030; } @media (min-width: 541px) { .navbar-fixed-top, .navbar-fixed-bottom { border-radius: 0; } } .navbar-fixed-top { top: 0; border-width: 0 0 1px; } .navbar-fixed-bottom { bottom: 0; margin-bottom: 0; border-width: 1px 0 0; } .navbar-brand { float: left; padding: 6px 0px; font-size: 17px; line-height: 18px; height: 30px; } .navbar-brand:hover, .navbar-brand:focus { text-decoration: none; } .navbar-brand > img { display: block; } @media (min-width: 541px) { .navbar > .container .navbar-brand, .navbar > .container-fluid .navbar-brand { margin-left: 0px; } } .navbar-toggle { position: relative; float: right; margin-right: 0px; padding: 9px 10px; margin-top: -2px; margin-bottom: -2px; background-color: transparent; background-image: none; border: 1px solid transparent; border-radius: 2px; } .navbar-toggle:focus { outline: 0; } .navbar-toggle .icon-bar { display: block; width: 22px; height: 2px; border-radius: 1px; } .navbar-toggle .icon-bar + .icon-bar { margin-top: 4px; } @media (min-width: 541px) { .navbar-toggle { display: none; } } .navbar-nav { margin: 3px 0px; } .navbar-nav > li > a { padding-top: 10px; padding-bottom: 10px; line-height: 18px; } @media (max-width: 540px) { .navbar-nav .open .dropdown-menu { position: static; float: none; width: auto; margin-top: 0; background-color: transparent; border: 0; box-shadow: none; } .navbar-nav .open .dropdown-menu > li > a, .navbar-nav .open .dropdown-menu .dropdown-header { padding: 5px 15px 5px 25px; } .navbar-nav .open .dropdown-menu > li > a { line-height: 18px; } .navbar-nav .open .dropdown-menu > li > a:hover, .navbar-nav .open .dropdown-menu > li > a:focus { background-image: none; } } @media (min-width: 541px) { .navbar-nav { float: left; margin: 0; } .navbar-nav > li { float: left; } .navbar-nav > li > a { padding-top: 6px; padding-bottom: 6px; } } .navbar-form { margin-left: 0px; margin-right: 0px; padding: 10px 0px; border-top: 1px solid transparent; border-bottom: 1px solid transparent; -webkit-box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1); box-shadow: inset 0 1px 0 rgba(255, 255, 255, 0.1), 0 1px 0 rgba(255, 255, 255, 0.1); margin-top: -1px; margin-bottom: -1px; } @media (min-width: 600px { .navbar-form .form-group { display: inline-block; margin-bottom: 0; vertical-align: middle; } .navbar-form .form-control { display: inline-block; width: auto; vertical-align: middle; } .navbar-form .form-control-static { display: inline-block; } .navbar-form .input-group { display: inline-table; vertical-align: middle; } .navbar-form .input-group .input-group-addon, .navbar-form .input-group .input-group-btn, .navbar-form .input-group .form-control { width: auto; } .navbar-form .input-group > .form-control { width: 100%; } .navbar-form .control-label { margin-bottom: 0; vertical-align: middle; } .navbar-form .radio, .navbar-form .checkbox { display: inline-block; margin-top: 0; margin-bottom: 0; vertical-align: middle; } .navbar-form .radio label, .navbar-form .checkbox label { padding-left: 0; } .navbar-form .radio input[type="radio"], .navbar-form .checkbox input[type="checkbox"] { position: relative; margin-left: 0; } .navbar-form .has-feedback .form-control-feedback { top: 0; } } @media (max-width: 540px) { .navbar-form .form-group { margin-bottom: 5px; } .navbar-form .form-group:last-child { margin-bottom: 0; } } @media (min-width: 541px) { .navbar-form { width: auto; border: 0; margin-left: 0; margin-right: 0; padding-top: 0; padding-bottom: 0; -webkit-box-shadow: none; box-shadow: none; } } .navbar-nav > li > .dropdown-menu { margin-top: 0; border-top-right-radius: 0; border-top-left-radius: 0; } .navbar-fixed-bottom .navbar-nav > li > .dropdown-menu { margin-bottom: 0; border-top-right-radius: 2px; border-top-left-radius: 2px; border-bottom-right-radius: 0; border-bottom-left-radius: 0; } .navbar-btn { margin-top: -1px; margin-bottom: -1px; } .navbar-btn.btn-sm { margin-top: 0px; margin-bottom: 0px; } .navbar-btn.btn-xs { margin-top: 4px; margin-bottom: 4px; } .navbar-text { margin-top: 6px; margin-bottom: 6px; } @media (min-width: 541px) { .navbar-text { float: left; margin-left: 0px; margin-right: 0px; } } @media (min-width: 541px) { .navbar-left { float: left !important; float: left; } .navbar-right { float: right !important; float: right; margin-right: 0px; } .navbar-right ~ .navbar-right { margin-right: 0; } } .navbar-default { background-color: #f8f8f8; border-color: #e7e7e7; } .navbar-default .navbar-brand { color: #777; } .navbar-default .navbar-brand:hover, .navbar-default .navbar-brand:focus { color: #5e5e5e; background-color: transparent; } .navbar-default .navbar-text { color: #777; } .navbar-default .navbar-nav > li > a { color: #777; } .navbar-default .navbar-nav > li > a:hover, .navbar-default .navbar-nav > li > a:focus { color: #333; background-color: transparent; } .navbar-default .navbar-nav > .active > a, .navbar-default .navbar-nav > .active > a:hover, .navbar-default .navbar-nav > .active > a:focus { color: #555; background-color: #e7e7e7; } .navbar-default .navbar-nav > .disabled > a, .navbar-default .navbar-nav > .disabled > a:hover, .navbar-default .navbar-nav > .disabled > a:focus { color: #ccc; background-color: transparent; } .navbar-default .navbar-toggle { border-color: #ddd; } .navbar-default .navbar-toggle:hover, .navbar-default .navbar-toggle:focus { background-color: #ddd; } .navbar-default .navbar-toggle .icon-bar { background-color: #888; } .navbar-default .navbar-collapse, .navbar-default .navbar-form { border-color: #e7e7e7; } .navbar-default .navbar-nav > .open > a, .navbar-default .navbar-nav > .open > a:hover, .navbar-default .navbar-nav > .open > a:focus { background-color: #e7e7e7; color: #555; } @media (max-width: 540px) { .navbar-default .navbar-nav .open .dropdown-menu > li > a { color: #777; } .navbar-default .navbar-nav .open .dropdown-menu > li > a:hover, .navbar-default .navbar-nav .open .dropdown-menu > li > a:focus { color: #333; background-color: transparent; } .navbar-default .navbar-nav .open .dropdown-menu > .active > a, .navbar-default .navbar-nav .open .dropdown-menu > .active > a:hover, .navbar-default .navbar-nav .open .dropdown-menu > .active > a:focus { color: #555; background-color: #e7e7e7; } .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a, .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a:hover, .navbar-default .navbar-nav .open .dropdown-menu > .disabled > a:focus { color: #ccc; background-color: transparent; } } .navbar-default .navbar-link { color: #777; } .navbar-default .navbar-link:hover { color: #333; } .navbar-default .btn-link { color: #777; } .navbar-default .btn-link:hover, .navbar-default .btn-link:focus { color: #333; } .navbar-default .btn-link[disabled]:hover, fieldset[disabled] .navbar-default .btn-link:hover, .navbar-default .btn-link[disabled]:focus, fieldset[disabled] .navbar-default .btn-link:focus { color: #ccc; } .navbar-inverse { background-color: #222; border-color: #080808; } .navbar-inverse .navbar-brand { color: #9d9d9d; } .navbar-inverse .navbar-brand:hover, .navbar-inverse .navbar-brand:focus { color: #fff; background-color: transparent; } .navbar-inverse .navbar-text { color: #9d9d9d; } .navbar-inverse .navbar-nav > li > a { color: #9d9d9d; } .navbar-inverse .navbar-nav > li > a:hover, .navbar-inverse .navbar-nav > li > a:focus { color: #fff; background-color: transparent; } .navbar-inverse .navbar-nav > .active > a, .navbar-inverse .navbar-nav > .active > a:hover, .navbar-inverse .navbar-nav > .active > a:focus { color: #fff; background-color: #080808; } .navbar-inverse .navbar-nav > .disabled > a, .navbar-inverse .navbar-nav > .disabled > a:hover, .navbar-inverse .navbar-nav > .disabled > a:focus { color: #444; background-color: transparent; } .navbar-inverse .navbar-toggle { border-color: #333; } .navbar-inverse .navbar-toggle:hover, .navbar-inverse .navbar-toggle:focus { background-color: #333; } .navbar-inverse .navbar-toggle .icon-bar { background-color: #fff; } .navbar-inverse .navbar-collapse, .navbar-inverse .navbar-form { border-color: #101010; } .navbar-inverse .navbar-nav > .open > a, .navbar-inverse .navbar-nav > .open > a:hover, .navbar-inverse .navbar-nav > .open > a:focus { background-color: #080808; color: #fff; } @media (max-width: 540px) { .navbar-inverse .navbar-nav .open .dropdown-menu > .dropdown-header { border-color: #080808; } .navbar-inverse .navbar-nav .open .dropdown-menu .divider { background-color: #080808; } .navbar-inverse .navbar-nav .open .dropdown-menu > li > a { color: #9d9d9d; } .navbar-inverse .navbar-nav .open .dropdown-menu > li > a:hover, .navbar-inverse .navbar-nav .open .dropdown-menu > li > a:focus { color: #fff; background-color: transparent; } .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a, .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a:hover, .navbar-inverse .navbar-nav .open .dropdown-menu > .active > a:focus { color: #fff; background-color: #080808; } .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a, .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a:hover, .navbar-inverse .navbar-nav .open .dropdown-menu > .disabled > a:focus { color: #444; background-color: transparent; } } .navbar-inverse .navbar-link { color: #9d9d9d; } .navbar-inverse .navbar-link:hover { color: #fff; } .navbar-inverse .btn-link { color: #9d9d9d; } .navbar-inverse .btn-link:hover, .navbar-inverse .btn-link:focus { color: #fff; } .navbar-inverse .btn-link[disabled]:hover, fieldset[disabled] .navbar-inverse .btn-link:hover, .navbar-inverse .btn-link[disabled]:focus, fieldset[disabled] .navbar-inverse .btn-link:focus { color: #444; } .breadcrumb { padding: 8px 15px; margin-bottom: 18px; list-style: none; background-color: #f5f5f5; border-radius: 2px; } .breadcrumb > li { display: inline-block; } .breadcrumb > li + li:before { content: "/\00a0"; padding: 0 5px; color: #5e5e5e; } .breadcrumb > .active { color: #777777; } .pagination { display: inline-block; padding-left: 0; margin: 18px 0; border-radius: 2px; } .pagination > li { display: inline; } .pagination > li > a, .pagination > li > span { position: relative; float: left; padding: 6px 12px; line-height: 1.42857143; text-decoration: none; color: #337ab7; background-color: #fff; border: 1px solid #ddd; margin-left: -1px; } .pagination > li:first-child > a, .pagination > li:first-child > span { margin-left: 0; border-bottom-left-radius: 2px; border-top-left-radius: 2px; } .pagination > li:last-child > a, .pagination > li:last-child > span { border-bottom-right-radius: 2px; border-top-right-radius: 2px; } .pagination > li > a:hover, .pagination > li > span:hover, .pagination > li > a:focus, .pagination > li > span:focus { z-index: 2; color: #23527c; background-color: #eeeeee; border-color: #ddd; } .pagination > .active > a, .pagination > .active > span, .pagination > .active > a:hover, .pagination > .active > span:hover, .pagination > .active > a:focus, .pagination > .active > span:focus { z-index: 3; color: #fff; background-color: #337ab7; border-color: #337ab7; cursor: default; } .pagination > .disabled > span, .pagination > .disabled > span:hover, .pagination > .disabled > span:focus, .pagination > .disabled > a, .pagination > .disabled > a:hover, .pagination > .disabled > a:focus { color: #777777; background-color: #fff; border-color: #ddd; cursor: not-allowed; } .pagination-lg > li > a, .pagination-lg > li > span { padding: 10px 16px; font-size: 17px; line-height: 1.3333333; } .pagination-lg > li:first-child > a, .pagination-lg > li:first-child > span { border-bottom-left-radius: 3px; border-top-left-radius: 3px; } .pagination-lg > li:last-child > a, .pagination-lg > li:last-child > span { border-bottom-right-radius: 3px; border-top-right-radius: 3px; } .pagination-sm > li > a, .pagination-sm > li > span { padding: 5px 10px; font-size: 12px; line-height: 1.5; } .pagination-sm > li:first-child > a, .pagination-sm > li:first-child > span { border-bottom-left-radius: 1px; border-top-left-radius: 1px; } .pagination-sm > li:last-child > a, .pagination-sm > li:last-child > span { border-bottom-right-radius: 1px; border-top-right-radius: 1px; } .pager { padding-left: 0; margin: 18px 0; list-style: none; text-align: center; } .pager li { display: inline; } .pager li > a, .pager li > span { display: inline-block; padding: 5px 14px; background-color: #fff; border: 1px solid #ddd; border-radius: 15px; } .pager li > a:hover, .pager li > a:focus { text-decoration: none; background-color: #eeeeee; } .pager .next > a, .pager .next > span { float: right; } .pager .previous > a, .pager .previous > span { float: left; } .pager .disabled > a, .pager .disabled > a:hover, .pager .disabled > a:focus, .pager .disabled > span { color: #777777; background-color: #fff; cursor: not-allowed; } .label { display: inline; padding: .2em .6em .3em; font-size: 75%; font-weight: bold; line-height: 1; color: #fff; text-align: center; white-space: nowrap; vertical-align: baseline; border-radius: .25em; } a.label:hover, a.label:focus { color: #fff; text-decoration: none; cursor: pointer; } .label:empty { display: none; } .btn .label { position: relative; top: -1px; } .label-default { background-color: #777777; } .label-default[href]:hover, .label-default[href]:focus { background-color: #5e5e5e; } .label-primary { background-color: #337ab7; } .label-primary[href]:hover, .label-primary[href]:focus { background-color: #286090; } .label-success { background-color: #5cb85c; } .label-success[href]:hover, .label-success[href]:focus { background-color: #449d44; } .label-info { background-color: #5bc0de; } .label-info[href]:hover, .label-info[href]:focus { background-color: #31b0d5; } .label-warning { background-color: #f0ad4e; } .label-warning[href]:hover, .label-warning[href]:focus { background-color: #ec971f; } .label-danger { background-color: #d9534f; } .label-danger[href]:hover, .label-danger[href]:focus { background-color: #c9302c; } .badge { display: inline-block; min-width: 10px; padding: 3px 7px; font-size: 12px; font-weight: bold; color: #fff; line-height: 1; vertical-align: middle; white-space: nowrap; text-align: center; background-color: #777777; border-radius: 10px; } .badge:empty { display: none; } .btn .badge { position: relative; top: -1px; } .btn-xs .badge, .btn-group-xs > .btn .badge { top: 0; padding: 1px 5px; } a.badge:hover, a.badge:focus { color: #fff; text-decoration: none; cursor: pointer; } .list-group-item.active > .badge, .nav-pills > .active > a > .badge { color: #337ab7; background-color: #fff; } .list-group-item > .badge { float: right; } .list-group-item > .badge + .badge { margin-right: 5px; } .nav-pills > li > a > .badge { margin-left: 3px; } .jumbotron { padding-top: 30px; padding-bottom: 30px; margin-bottom: 30px; color: inherit; background-color: #eeeeee; } .jumbotron h1, .jumbotron .h1 { color: inherit; } .jumbotron p { margin-bottom: 15px; font-size: 20px; font-weight: 200; } .jumbotron > hr { border-top-color: #d5d5d5; } .container .jumbotron, .container-fluid .jumbotron { border-radius: 3px; padding-left: 0px; padding-right: 0px; } .jumbotron .container { max-width: 100%; } @media screen and (min-width: 768px) { .jumbotron { padding-top: 48px; padding-bottom: 48px; } .container .jumbotron, .container-fluid .jumbotron { padding-left: 60px; padding-right: 60px; } .jumbotron h1, .jumbotron .h1 { font-size: 59px; } } .thumbnail { display: block; padding: 4px; margin-bottom: 18px; line-height: 1.42857143; background-color: #fff; border: 1px solid #ddd; border-radius: 2px; -webkit-transition: border 0.2s ease-in-out; -o-transition: border 0.2s ease-in-out; transition: border 0.2s ease-in-out; } .thumbnail > img, .thumbnail a > img { margin-left: auto; margin-right: auto; } a.thumbnail:hover, a.thumbnail:focus, a.thumbnail.active { border-color: #337ab7; } .thumbnail .caption { padding: 9px; color: #000; } .alert { padding: 15px; margin-bottom: 18px; border: 1px solid transparent; border-radius: 2px; } .alert h4 { margin-top: 0; color: inherit; } .alert .alert-link { font-weight: bold; } .alert > p, .alert > ul { margin-bottom: 0; } .alert > p + p { margin-top: 5px; } .alert-dismissable, .alert-dismissible { padding-right: 35px; } .alert-dismissable .close, .alert-dismissible .close { position: relative; top: -2px; right: -21px; color: inherit; } .alert-success { background-color: #dff0d8; border-color: #d6e9c6; color: #3c763d; } .alert-success hr { border-top-color: #c9e2b3; } .alert-success .alert-link { color: #2b542c; } .alert-info { background-color: #d9edf7; border-color: #bce8f1; color: #31708f; } .alert-info hr { border-top-color: #a6e1ec; } .alert-info .alert-link { color: #245269; } .alert-warning { background-color: #fcf8e3; border-color: #faebcc; color: #8a6d3b; } .alert-warning hr { border-top-color: #f7e1b5; } .alert-warning .alert-link { color: #66512c; } .alert-danger { background-color: #f2dede; border-color: #ebccd1; color: #a94442; } .alert-danger hr { border-top-color: #e4b9c0; } .alert-danger .alert-link { color: #843534; } @-webkit-keyframes progress-bar-stripes { from { background-position: 40px 0; } to { background-position: 0 0; } } @keyframes progress-bar-stripes { from { background-position: 40px 0; } to { background-position: 0 0; } } .progress { overflow: hidden; height: 18px; margin-bottom: 18px; background-color: #f5f5f5; border-radius: 2px; -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1); box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1); } .progress-bar { float: left; width: 0%; height: 100%; font-size: 12px; line-height: 18px; color: #fff; text-align: center; background-color: #337ab7; -webkit-box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15); box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.15); -webkit-transition: width 0.6s ease; -o-transition: width 0.6s ease; transition: width 0.6s ease; } .progress-striped .progress-bar, .progress-bar-striped { background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); background-size: 40px 40px; } .progress.active .progress-bar, .progress-bar.active { -webkit-animation: progress-bar-stripes 2s linear infinite; -o-animation: progress-bar-stripes 2s linear infinite; animation: progress-bar-stripes 2s linear infinite; } .progress-bar-success { background-color: #5cb85c; } .progress-striped .progress-bar-success { background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); } .progress-bar-info { background-color: #5bc0de; } .progress-striped .progress-bar-info { background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); } .progress-bar-warning { background-color: #f0ad4e; } .progress-striped .progress-bar-warning { background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); } .progress-bar-danger { background-color: #d9534f; } .progress-striped .progress-bar-danger { background-image: -webkit-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); background-image: -o-linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); background-image: linear-gradient(45deg, rgba(255, 255, 255, 0.15) 25%, transparent 25%, transparent 50%, rgba(255, 255, 255, 0.15) 50%, rgba(255, 255, 255, 0.15) 75%, transparent 75%, transparent); } .media { margin-top: 15px; } .media:first-child { margin-top: 0; } .media, .media-body { zoom: 1; overflow: hidden; } .media-body { width: 10000px; } .media-object { display: block; } .media-object.img-thumbnail { max-width: none; } .media-right, .media > .pull-right { padding-left: 10px; } .media-left, .media > .pull-left { padding-right: 10px; } .media-left, .media-right, .media-body { display: table-cell; vertical-align: top; } .media-middle { vertical-align: middle; } .media-bottom { vertical-align: bottom; } .media-heading { margin-top: 0; margin-bottom: 5px; } .media-list { padding-left: 0; list-style: none; } .list-group { margin-bottom: 20px; padding-left: 0; } .list-group-item { position: relative; display: block; padding: 10px 15px; margin-bottom: -1px; background-color: #fff; border: 1px solid #ddd; } .list-group-item:first-child { border-top-right-radius: 2px; border-top-left-radius: 2px; } .list-group-item:last-child { margin-bottom: 0; border-bottom-right-radius: 2px; border-bottom-left-radius: 2px; } a.list-group-item, button.list-group-item { color: #555; } a.list-group-item .list-group-item-heading, button.list-group-item .list-group-item-heading { color: #333; } a.list-group-item:hover, button.list-group-item:hover, a.list-group-item:focus, button.list-group-item:focus { text-decoration: none; color: #555; background-color: #f5f5f5; } button.list-group-item { width: 100%; text-align: left; } .list-group-item.disabled, .list-group-item.disabled:hover, .list-group-item.disabled:focus { background-color: #eeeeee; color: #777777; cursor: not-allowed; } .list-group-item.disabled .list-group-item-heading, .list-group-item.disabled:hover .list-group-item-heading, .list-group-item.disabled:focus .list-group-item-heading { color: inherit; } .list-group-item.disabled .list-group-item-text, .list-group-item.disabled:hover .list-group-item-text, .list-group-item.disabled:focus .list-group-item-text { color: #777777; } .list-group-item.active, .list-group-item.active:hover, .list-group-item.active:focus { z-index: 2; color: #fff; background-color: #337ab7; border-color: #337ab7; } .list-group-item.active .list-group-item-heading, .list-group-item.active:hover .list-group-item-heading, .list-group-item.active:focus .list-group-item-heading, .list-group-item.active .list-group-item-heading > small, .list-group-item.active:hover .list-group-item-heading > small, .list-group-item.active:focus .list-group-item-heading > small, .list-group-item.active .list-group-item-heading > .small, .list-group-item.active:hover .list-group-item-heading > .small, .list-group-item.active:focus .list-group-item-heading > .small { color: inherit; } .list-group-item.active .list-group-item-text, .list-group-item.active:hover .list-group-item-text, .list-group-item.active:focus .list-group-item-text { color: #c7ddef; } .list-group-item-success { color: #3c763d; background-color: #dff0d8; } a.list-group-item-success, button.list-group-item-success { color: #3c763d; } a.list-group-item-success .list-group-item-heading, button.list-group-item-success .list-group-item-heading { color: inherit; } a.list-group-item-success:hover, button.list-group-item-success:hover, a.list-group-item-success:focus, button.list-group-item-success:focus { color: #3c763d; background-color: #d0e9c6; } a.list-group-item-success.active, button.list-group-item-success.active, a.list-group-item-success.active:hover, button.list-group-item-success.active:hover, a.list-group-item-success.active:focus, button.list-group-item-success.active:focus { color: #fff; background-color: #3c763d; border-color: #3c763d; } .list-group-item-info { color: #31708f; background-color: #d9edf7; } a.list-group-item-info, button.list-group-item-info { color: #31708f; } a.list-group-item-info .list-group-item-heading, button.list-group-item-info .list-group-item-heading { color: inherit; } a.list-group-item-info:hover, button.list-group-item-info:hover, a.list-group-item-info:focus, button.list-group-item-info:focus { color: #31708f; background-color: #c4e3f3; } a.list-group-item-info.active, button.list-group-item-info.active, a.list-group-item-info.active:hover, button.list-group-item-info.active:hover, a.list-group-item-info.active:focus, button.list-group-item-info.active:focus { color: #fff; background-color: #31708f; border-color: #31708f; } .list-group-item-warning { color: #8a6d3b; background-color: #fcf8e3; } a.list-group-item-warning, button.list-group-item-warning { color: #8a6d3b; } a.list-group-item-warning .list-group-item-heading, button.list-group-item-warning .list-group-item-heading { color: inherit; } a.list-group-item-warning:hover, button.list-group-item-warning:hover, a.list-group-item-warning:focus, button.list-group-item-warning:focus { color: #8a6d3b; background-color: #faf2cc; } a.list-group-item-warning.active, button.list-group-item-warning.active, a.list-group-item-warning.active:hover, button.list-group-item-warning.active:hover, a.list-group-item-warning.active:focus, button.list-group-item-warning.active:focus { color: #fff; background-color: #8a6d3b; border-color: #8a6d3b; } .list-group-item-danger { color: #a94442; background-color: #f2dede; } a.list-group-item-danger, button.list-group-item-danger { color: #a94442; } a.list-group-item-danger .list-group-item-heading, button.list-group-item-danger .list-group-item-heading { color: inherit; } a.list-group-item-danger:hover, button.list-group-item-danger:hover, a.list-group-item-danger:focus, button.list-group-item-danger:focus { color: #a94442; background-color: #ebcccc; } a.list-group-item-danger.active, button.list-group-item-danger.active, a.list-group-item-danger.active:hover, button.list-group-item-danger.active:hover, a.list-group-item-danger.active:focus, button.list-group-item-danger.active:focus { color: #fff; background-color: #a94442; border-color: #a94442; } .list-group-item-heading { margin-top: 0; margin-bottom: 5px; } .list-group-item-text { margin-bottom: 0; line-height: 1.3; } .panel { margin-bottom: 18px; background-color: #fff; border: 1px solid transparent; border-radius: 2px; -webkit-box-shadow: 0 1px 1px rgba(0, 0, 0, 0.05); box-shadow: 0 1px 1px rgba(0, 0, 0, 0.05); } .panel-body { padding: 15px; } .panel-heading { padding: 10px 15px; border-bottom: 1px solid transparent; border-top-right-radius: 1px; border-top-left-radius: 1px; } .panel-heading > .dropdown .dropdown-toggle { color: inherit; } .panel-title { margin-top: 0; margin-bottom: 0; font-size: 15px; color: inherit; } .panel-title > a, .panel-title > small, .panel-title > .small, .panel-title > small > a, .panel-title > .small > a { color: inherit; } .panel-footer { padding: 10px 15px; background-color: #f5f5f5; border-top: 1px solid #ddd; border-bottom-right-radius: 1px; border-bottom-left-radius: 1px; } .panel > .list-group, .panel > .panel-collapse > .list-group { margin-bottom: 0; } .panel > .list-group .list-group-item, .panel > .panel-collapse > .list-group .list-group-item { border-width: 1px 0; border-radius: 0; } .panel > .list-group:first-child .list-group-item:first-child, .panel > .panel-collapse > .list-group:first-child .list-group-item:first-child { border-top: 0; border-top-right-radius: 1px; border-top-left-radius: 1px; } .panel > .list-group:last-child .list-group-item:last-child, .panel > .panel-collapse > .list-group:last-child .list-group-item:last-child { border-bottom: 0; border-bottom-right-radius: 1px; border-bottom-left-radius: 1px; } .panel > .panel-heading + .panel-collapse > .list-group .list-group-item:first-child { border-top-right-radius: 0; border-top-left-radius: 0; } .panel-heading + .list-group .list-group-item:first-child { border-top-width: 0; } .list-group + .panel-footer { border-top-width: 0; } .panel > .table, .panel > .table-responsive > .table, .panel > .panel-collapse > .table { margin-bottom: 0; } .panel > .table caption, .panel > .table-responsive > .table caption, .panel > .panel-collapse > .table caption { padding-left: 15px; padding-right: 15px; } .panel > .table:first-child, .panel > .table-responsive:first-child > .table:first-child { border-top-right-radius: 1px; border-top-left-radius: 1px; } .panel > .table:first-child > thead:first-child > tr:first-child, .panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child, .panel > .table:first-child > tbody:first-child > tr:first-child, .panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child { border-top-left-radius: 1px; border-top-right-radius: 1px; } .panel > .table:first-child > thead:first-child > tr:first-child td:first-child, .panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child td:first-child, .panel > .table:first-child > tbody:first-child > tr:first-child td:first-child, .panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child td:first-child, .panel > .table:first-child > thead:first-child > tr:first-child th:first-child, .panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child th:first-child, .panel > .table:first-child > tbody:first-child > tr:first-child th:first-child, .panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child th:first-child { border-top-left-radius: 1px; } .panel > .table:first-child > thead:first-child > tr:first-child td:last-child, .panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child td:last-child, .panel > .table:first-child > tbody:first-child > tr:first-child td:last-child, .panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child td:last-child, .panel > .table:first-child > thead:first-child > tr:first-child th:last-child, .panel > .table-responsive:first-child > .table:first-child > thead:first-child > tr:first-child th:last-child, .panel > .table:first-child > tbody:first-child > tr:first-child th:last-child, .panel > .table-responsive:first-child > .table:first-child > tbody:first-child > tr:first-child th:last-child { border-top-right-radius: 1px; } .panel > .table:last-child, .panel > .table-responsive:last-child > .table:last-child { border-bottom-right-radius: 1px; border-bottom-left-radius: 1px; } .panel > .table:last-child > tbody:last-child > tr:last-child, .panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child, .panel > .table:last-child > tfoot:last-child > tr:last-child, .panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child { border-bottom-left-radius: 1px; border-bottom-right-radius: 1px; } .panel > .table:last-child > tbody:last-child > tr:last-child td:first-child, .panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child td:first-child, .panel > .table:last-child > tfoot:last-child > tr:last-child td:first-child, .panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child td:first-child, .panel > .table:last-child > tbody:last-child > tr:last-child th:first-child, .panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child th:first-child, .panel > .table:last-child > tfoot:last-child > tr:last-child th:first-child, .panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child th:first-child { border-bottom-left-radius: 1px; } .panel > .table:last-child > tbody:last-child > tr:last-child td:last-child, .panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child td:last-child, .panel > .table:last-child > tfoot:last-child > tr:last-child td:last-child, .panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child td:last-child, .panel > .table:last-child > tbody:last-child > tr:last-child th:last-child, .panel > .table-responsive:last-child > .table:last-child > tbody:last-child > tr:last-child th:last-child, .panel > .table:last-child > tfoot:last-child > tr:last-child th:last-child, .panel > .table-responsive:last-child > .table:last-child > tfoot:last-child > tr:last-child th:last-child { border-bottom-right-radius: 1px; } .panel > .panel-body + .table, .panel > .panel-body + .table-responsive, .panel > .table + .panel-body, .panel > .table-responsive + .panel-body { border-top: 1px solid #ddd; } .panel > .table > tbody:first-child > tr:first-child th, .panel > .table > tbody:first-child > tr:first-child td { border-top: 0; } .panel > .table-bordered, .panel > .table-responsive > .table-bordered { border: 0; } .panel > .table-bordered > thead > tr > th:first-child, .panel > .table-responsive > .table-bordered > thead > tr > th:first-child, .panel > .table-bordered > tbody > tr > th:first-child, .panel > .table-responsive > .table-bordered > tbody > tr > th:first-child, .panel > .table-bordered > tfoot > tr > th:first-child, .panel > .table-responsive > .table-bordered > tfoot > tr > th:first-child, .panel > .table-bordered > thead > tr > td:first-child, .panel > .table-responsive > .table-bordered > thead > tr > td:first-child, .panel > .table-bordered > tbody > tr > td:first-child, .panel > .table-responsive > .table-bordered > tbody > tr > td:first-child, .panel > .table-bordered > tfoot > tr > td:first-child, .panel > .table-responsive > .table-bordered > tfoot > tr > td:first-child { border-left: 0; } .panel > .table-bordered > thead > tr > th:last-child, .panel > .table-responsive > .table-bordered > thead > tr > th:last-child, .panel > .table-bordered > tbody > tr > th:last-child, .panel > .table-responsive > .table-bordered > tbody > tr > th:last-child, .panel > .table-bordered > tfoot > tr > th:last-child, .panel > .table-responsive > .table-bordered > tfoot > tr > th:last-child, .panel > .table-bordered > thead > tr > td:last-child, .panel > .table-responsive > .table-bordered > thead > tr > td:last-child, .panel > .table-bordered > tbody > tr > td:last-child, .panel > .table-responsive > .table-bordered > tbody > tr > td:last-child, .panel > .table-bordered > tfoot > tr > td:last-child, .panel > .table-responsive > .table-bordered > tfoot > tr > td:last-child { border-right: 0; } .panel > .table-bordered > thead > tr:first-child > td, .panel > .table-responsive > .table-bordered > thead > tr:first-child > td, .panel > .table-bordered > tbody > tr:first-child > td, .panel > .table-responsive > .table-bordered > tbody > tr:first-child > td, .panel > .table-bordered > thead > tr:first-child > th, .panel > .table-responsive > .table-bordered > thead > tr:first-child > th, .panel > .table-bordered > tbody > tr:first-child > th, .panel > .table-responsive > .table-bordered > tbody > tr:first-child > th { border-bottom: 0; } .panel > .table-bordered > tbody > tr:last-child > td, .panel > .table-responsive > .table-bordered > tbody > tr:last-child > td, .panel > .table-bordered > tfoot > tr:last-child > td, .panel > .table-responsive > .table-bordered > tfoot > tr:last-child > td, .panel > .table-bordered > tbody > tr:last-child > th, .panel > .table-responsive > .table-bordered > tbody > tr:last-child > th, .panel > .table-bordered > tfoot > tr:last-child > th, .panel > .table-responsive > .table-bordered > tfoot > tr:last-child > th { border-bottom: 0; } .panel > .table-responsive { border: 0; margin-bottom: 0; } .panel-group { margin-bottom: 18px; } .panel-group .panel { margin-bottom: 0; border-radius: 2px; } .panel-group .panel + .panel { margin-top: 5px; } .panel-group .panel-heading { border-bottom: 0; } .panel-group .panel-heading + .panel-collapse > .panel-body, .panel-group .panel-heading + .panel-collapse > .list-group { border-top: 1px solid #ddd; } .panel-group .panel-footer { border-top: 0; } .panel-group .panel-footer + .panel-collapse .panel-body { border-bottom: 1px solid #ddd; } .panel-default { border-color: #ddd; } .panel-default > .panel-heading { color: #333333; background-color: #f5f5f5; border-color: #ddd; } .panel-default > .panel-heading + .panel-collapse > .panel-body { border-top-color: #ddd; } .panel-default > .panel-heading .badge { color: #f5f5f5; background-color: #333333; } .panel-default > .panel-footer + .panel-collapse > .panel-body { border-bottom-color: #ddd; } .panel-primary { border-color: #337ab7; } .panel-primary > .panel-heading { color: #fff; background-color: #337ab7; border-color: #337ab7; } .panel-primary > .panel-heading + .panel-collapse > .panel-body { border-top-color: #337ab7; } .panel-primary > .panel-heading .badge { color: #337ab7; background-color: #fff; } .panel-primary > .panel-footer + .panel-collapse > .panel-body { border-bottom-color: #337ab7; } .panel-success { border-color: #d6e9c6; } .panel-success > .panel-heading { color: #3c763d; background-color: #dff0d8; border-color: #d6e9c6; } .panel-success > .panel-heading + .panel-collapse > .panel-body { border-top-color: #d6e9c6; } .panel-success > .panel-heading .badge { color: #dff0d8; background-color: #3c763d; } .panel-success > .panel-footer + .panel-collapse > .panel-body { border-bottom-color: #d6e9c6; } .panel-info { border-color: #bce8f1; } .panel-info > .panel-heading { color: #31708f; background-color: #d9edf7; border-color: #bce8f1; } .panel-info > .panel-heading + .panel-collapse > .panel-body { border-top-color: #bce8f1; } .panel-info > .panel-heading .badge { color: #d9edf7; background-color: #31708f; } .panel-info > .panel-footer + .panel-collapse > .panel-body { border-bottom-color: #bce8f1; } .panel-warning { border-color: #faebcc; } .panel-warning > .panel-heading { color: #8a6d3b; background-color: #fcf8e3; border-color: #faebcc; } .panel-warning > .panel-heading + .panel-collapse > .panel-body { border-top-color: #faebcc; } .panel-warning > .panel-heading .badge { color: #fcf8e3; background-color: #8a6d3b; } .panel-warning > .panel-footer + .panel-collapse > .panel-body { border-bottom-color: #faebcc; } .panel-danger { border-color: #ebccd1; } .panel-danger > .panel-heading { color: #a94442; background-color: #f2dede; border-color: #ebccd1; } .panel-danger > .panel-heading + .panel-collapse > .panel-body { border-top-color: #ebccd1; } .panel-danger > .panel-heading .badge { color: #f2dede; background-color: #a94442; } .panel-danger > .panel-footer + .panel-collapse > .panel-body { border-bottom-color: #ebccd1; } .embed-responsive { position: relative; display: block; height: 0; padding: 0; overflow: hidden; } .embed-responsive .embed-responsive-item, .embed-responsive iframe, .embed-responsive embed, .embed-responsive object, .embed-responsive video { position: absolute; top: 0; left: 0; bottom: 0; height: 100%; width: 100%; border: 0; } .embed-responsive-16by9 { padding-bottom: 56.25%; } .embed-responsive-4by3 { padding-bottom: 75%; } .well { min-height: 20px; padding: 19px; margin-bottom: 20px; background-color: #f5f5f5; border: 1px solid #e3e3e3; border-radius: 2px; -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05); } .well blockquote { border-color: #ddd; border-color: rgba(0, 0, 0, 0.15); } .well-lg { padding: 24px; border-radius: 3px; } .well-sm { padding: 9px; border-radius: 1px; } .close { float: right; font-size: 19.5px; font-weight: bold; line-height: 1; color: #000; text-shadow: 0 1px 0 #fff; opacity: 0.2; filter: alpha(opacity=20); } .close:hover, .close:focus { color: #000; text-decoration: none; cursor: pointer; opacity: 0.5; filter: alpha(opacity=50); } button.close { padding: 0; cursor: pointer; background: transparent; border: 0; -webkit-appearance: none; } .modal-open { overflow: hidden; } .modal { display: none; overflow: hidden; position: fixed; top: 0; right: 0; bottom: 0; left: 0; z-index: 1050; -webkit-overflow-scrolling: touch; outline: 0; } .modal.fade .modal-dialog { -webkit-transform: translate(0, -25%); -ms-transform: translate(0, -25%); -o-transform: translate(0, -25%); transform: translate(0, -25%); -webkit-transition: -webkit-transform 0.3s ease-out; -moz-transition: -moz-transform 0.3s ease-out; -o-transition: -o-transform 0.3s ease-out; transition: transform 0.3s ease-out; } .modal.in .modal-dialog { -webkit-transform: translate(0, 0); -ms-transform: translate(0, 0); -o-transform: translate(0, 0); transform: translate(0, 0); } .modal-open .modal { overflow-x: hidden; overflow-y: auto; } .modal-dialog { position: relative; width: auto; margin: 10px; } .modal-content { position: relative; background-color: #fff; border: 1px solid #999; border: 1px solid rgba(0, 0, 0, 0.2); border-radius: 3px; -webkit-box-shadow: 0 3px 9px rgba(0, 0, 0, 0.5); box-shadow: 0 3px 9px rgba(0, 0, 0, 0.5); background-clip: padding-box; outline: 0; } .modal-backdrop { position: fixed; top: 0; right: 0; bottom: 0; left: 0; z-index: 1040; background-color: #000; } .modal-backdrop.fade { opacity: 0; filter: alpha(opacity=0); } .modal-backdrop.in { opacity: 0.5; filter: alpha(opacity=50); } .modal-header { padding: 15px; border-bottom: 1px solid #e5e5e5; } .modal-header .close { margin-top: -2px; } .modal-title { margin: 0; line-height: 1.42857143; } .modal-body { position: relative; padding: 15px; } .modal-footer { padding: 15px; text-align: right; border-top: 1px solid #e5e5e5; } .modal-footer .btn + .btn { margin-left: 5px; margin-bottom: 0; } .modal-footer .btn-group .btn + .btn { margin-left: -1px; } .modal-footer .btn-block + .btn-block { margin-left: 0; } .modal-scrollbar-measure { position: absolute; top: -9999px; width: 50px; height: 50px; overflow: scroll; } @media (min-width: 600px { .modal-dialog { width: 600px; margin: 30px auto; } .modal-content { -webkit-box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5); box-shadow: 0 5px 15px rgba(0, 0, 0, 0.5); } .modal-sm { width: 300px; } } @media (min-width: 600px { .modal-lg { width: 900px; } } .tooltip { position: absolute; z-index: 1070; display: block; font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; font-style: normal; font-weight: normal; letter-spacing: normal; line-break: auto; line-height: 1.42857143; text-align: left; text-align: start; text-decoration: none; text-shadow: none; text-transform: none; white-space: normal; word-break: normal; word-spacing: normal; word-wrap: normal; font-size: 12px; opacity: 0; filter: alpha(opacity=0); } .tooltip.in { opacity: 0.9; filter: alpha(opacity=90); } .tooltip.top { margin-top: -3px; padding: 5px 0; } .tooltip.right { margin-left: 3px; padding: 0 5px; } .tooltip.bottom { margin-top: 3px; padding: 5px 0; } .tooltip.left { margin-left: -3px; padding: 0 5px; } .tooltip-inner { max-width: 200px; padding: 3px 8px; color: #fff; text-align: center; background-color: #000; border-radius: 2px; } .tooltip-arrow { position: absolute; width: 0; height: 0; border-color: transparent; border-style: solid; } .tooltip.top .tooltip-arrow { bottom: 0; left: 50%; margin-left: -5px; border-width: 5px 5px 0; border-top-color: #000; } .tooltip.top-left .tooltip-arrow { bottom: 0; right: 5px; margin-bottom: -5px; border-width: 5px 5px 0; border-top-color: #000; } .tooltip.top-right .tooltip-arrow { bottom: 0; left: 5px; margin-bottom: -5px; border-width: 5px 5px 0; border-top-color: #000; } .tooltip.right .tooltip-arrow { top: 50%; left: 0; margin-top: -5px; border-width: 5px 5px 5px 0; border-right-color: #000; } .tooltip.left .tooltip-arrow { top: 50%; right: 0; margin-top: -5px; border-width: 5px 0 5px 5px; border-left-color: #000; } .tooltip.bottom .tooltip-arrow { top: 0; left: 50%; margin-left: -5px; border-width: 0 5px 5px; border-bottom-color: #000; } .tooltip.bottom-left .tooltip-arrow { top: 0; right: 5px; margin-top: -5px; border-width: 0 5px 5px; border-bottom-color: #000; } .tooltip.bottom-right .tooltip-arrow { top: 0; left: 5px; margin-top: -5px; border-width: 0 5px 5px; border-bottom-color: #000; } .popover { position: absolute; top: 0; left: 0; z-index: 1060; display: none; max-width: 276px; padding: 1px; font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; font-style: normal; font-weight: normal; letter-spacing: normal; line-break: auto; line-height: 1.42857143; text-align: left; text-align: start; text-decoration: none; text-shadow: none; text-transform: none; white-space: normal; word-break: normal; word-spacing: normal; word-wrap: normal; font-size: 13px; background-color: #fff; background-clip: padding-box; border: 1px solid #ccc; border: 1px solid rgba(0, 0, 0, 0.2); border-radius: 3px; -webkit-box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); } .popover.top { margin-top: -10px; } .popover.right { margin-left: 10px; } .popover.bottom { margin-top: 10px; } .popover.left { margin-left: -10px; } .popover-title { margin: 0; padding: 8px 14px; font-size: 13px; background-color: #f7f7f7; border-bottom: 1px solid #ebebeb; border-radius: 2px 2px 0 0; } .popover-content { padding: 9px 14px; } .popover > .arrow, .popover > .arrow:after { position: absolute; display: block; width: 0; height: 0; border-color: transparent; border-style: solid; } .popover > .arrow { border-width: 11px; } .popover > .arrow:after { border-width: 10px; content: ""; } .popover.top > .arrow { left: 50%; margin-left: -11px; border-bottom-width: 0; border-top-color: #999999; border-top-color: rgba(0, 0, 0, 0.25); bottom: -11px; } .popover.top > .arrow:after { content: " "; bottom: 1px; margin-left: -10px; border-bottom-width: 0; border-top-color: #fff; } .popover.right > .arrow { top: 50%; left: -11px; margin-top: -11px; border-left-width: 0; border-right-color: #999999; border-right-color: rgba(0, 0, 0, 0.25); } .popover.right > .arrow:after { content: " "; left: 1px; bottom: -10px; border-left-width: 0; border-right-color: #fff; } .popover.bottom > .arrow { left: 50%; margin-left: -11px; border-top-width: 0; border-bottom-color: #999999; border-bottom-color: rgba(0, 0, 0, 0.25); top: -11px; } .popover.bottom > .arrow:after { content: " "; top: 1px; margin-left: -10px; border-top-width: 0; border-bottom-color: #fff; } .popover.left > .arrow { top: 50%; right: -11px; margin-top: -11px; border-right-width: 0; border-left-color: #999999; border-left-color: rgba(0, 0, 0, 0.25); } .popover.left > .arrow:after { content: " "; right: 1px; border-right-width: 0; border-left-color: #fff; bottom: -10px; } .carousel { position: relative; } .carousel-inner { position: relative; overflow: hidden; width: 100%; } .carousel-inner > .item { display: none; position: relative; -webkit-transition: 0.6s ease-in-out left; -o-transition: 0.6s ease-in-out left; transition: 0.6s ease-in-out left; } .carousel-inner > .item > img, .carousel-inner > .item > a > img { line-height: 1; } @media all and (transform-3d), (-webkit-transform-3d) { .carousel-inner > .item { -webkit-transition: -webkit-transform 0.6s ease-in-out; -moz-transition: -moz-transform 0.6s ease-in-out; -o-transition: -o-transform 0.6s ease-in-out; transition: transform 0.6s ease-in-out; -webkit-backface-visibility: hidden; -moz-backface-visibility: hidden; backface-visibility: hidden; -webkit-perspective: 1000px; -moz-perspective: 1000px; perspective: 1000px; } .carousel-inner > .item.next, .carousel-inner > .item.active.right { -webkit-transform: translate3d(100%, 0, 0); transform: translate3d(100%, 0, 0); left: 0; } .carousel-inner > .item.prev, .carousel-inner > .item.active.left { -webkit-transform: translate3d(-100%, 0, 0); transform: translate3d(-100%, 0, 0); left: 0; } .carousel-inner > .item.next.left, .carousel-inner > .item.prev.right, .carousel-inner > .item.active { -webkit-transform: translate3d(0, 0, 0); transform: translate3d(0, 0, 0); left: 0; } } .carousel-inner > .active, .carousel-inner > .next, .carousel-inner > .prev { display: block; } .carousel-inner > .active { left: 0; } .carousel-inner > .next, .carousel-inner > .prev { position: absolute; top: 0; width: 100%; } .carousel-inner > .next { left: 100%; } .carousel-inner > .prev { left: -100%; } .carousel-inner > .next.left, .carousel-inner > .prev.right { left: 0; } .carousel-inner > .active.left { left: -100%; } .carousel-inner > .active.right { left: 100%; } .carousel-control { position: absolute; top: 0; left: 0; bottom: 0; width: 15%; opacity: 0.5; filter: alpha(opacity=50); font-size: 20px; color: #fff; text-align: center; text-shadow: 0 1px 2px rgba(0, 0, 0, 0.6); background-color: rgba(0, 0, 0, 0); } .carousel-control.left { background-image: -webkit-linear-gradient(left, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%); background-image: -o-linear-gradient(left, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%); background-image: linear-gradient(to right, rgba(0, 0, 0, 0.5) 0%, rgba(0, 0, 0, 0.0001) 100%); background-repeat: repeat-x; filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#80000000', endColorstr='#00000000', GradientType=1); } .carousel-control.right { left: auto; right: 0; background-image: -webkit-linear-gradient(left, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%); background-image: -o-linear-gradient(left, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%); background-image: linear-gradient(to right, rgba(0, 0, 0, 0.0001) 0%, rgba(0, 0, 0, 0.5) 100%); background-repeat: repeat-x; filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#00000000', endColorstr='#80000000', GradientType=1); } .carousel-control:hover, .carousel-control:focus { outline: 0; color: #fff; text-decoration: none; opacity: 0.9; filter: alpha(opacity=90); } .carousel-control .icon-prev, .carousel-control .icon-next, .carousel-control .glyphicon-chevron-left, .carousel-control .glyphicon-chevron-right { position: absolute; top: 50%; margin-top: -10px; z-index: 5; display: inline-block; } .carousel-control .icon-prev, .carousel-control .glyphicon-chevron-left { left: 50%; margin-left: -10px; } .carousel-control .icon-next, .carousel-control .glyphicon-chevron-right { right: 50%; margin-right: -10px; } .carousel-control .icon-prev, .carousel-control .icon-next { width: 20px; height: 20px; line-height: 1; font-family: serif; } .carousel-control .icon-prev:before { content: '\2039'; } .carousel-control .icon-next:before { content: '\203a'; } .carousel-indicators { position: absolute; bottom: 10px; left: 50%; z-index: 15; width: 60%; margin-left: -30%; padding-left: 0; list-style: none; text-align: center; } .carousel-indicators li { display: inline-block; width: 10px; height: 10px; margin: 1px; text-indent: -999px; border: 1px solid #fff; border-radius: 10px; cursor: pointer; background-color: #000 \9; background-color: rgba(0, 0, 0, 0); } .carousel-indicators .active { margin: 0; width: 12px; height: 12px; background-color: #fff; } .carousel-caption { position: absolute; left: 15%; right: 15%; bottom: 20px; z-index: 10; padding-top: 20px; padding-bottom: 20px; color: #fff; text-align: center; text-shadow: 0 1px 2px rgba(0, 0, 0, 0.6); } .carousel-caption .btn { text-shadow: none; } @media screen and (min-width: 768px) { .carousel-control .glyphicon-chevron-left, .carousel-control .glyphicon-chevron-right, .carousel-control .icon-prev, .carousel-control .icon-next { width: 30px; height: 30px; margin-top: -10px; font-size: 30px; } .carousel-control .glyphicon-chevron-left, .carousel-control .icon-prev { margin-left: -10px; } .carousel-control .glyphicon-chevron-right, .carousel-control .icon-next { margin-right: -10px; } .carousel-caption { left: 20%; right: 20%; padding-bottom: 30px; } .carousel-indicators { bottom: 20px; } } .clearfix:before, .clearfix:after, .dl-horizontal dd:before, .dl-horizontal dd:after, .container:before, .container:after, .container-fluid:before, .container-fluid:after, .row:before, .row:after, .form-horizontal .form-group:before, .form-horizontal .form-group:after, .btn-toolbar:before, .btn-toolbar:after, .btn-group-vertical > .btn-group:before, .btn-group-vertical > .btn-group:after, .nav:before, .nav:after, .navbar:before, .navbar:after, .navbar-header:before, .navbar-header:after, .navbar-collapse:before, .navbar-collapse:after, .pager:before, .pager:after, .panel-body:before, .panel-body:after, .modal-header:before, .modal-header:after, .modal-footer:before, .modal-footer:after, .item_buttons:before, .item_buttons:after { content: " "; display: table; } .clearfix:after, .dl-horizontal dd:after, .container:after, .container-fluid:after, .row:after, .form-horizontal .form-group:after, .btn-toolbar:after, .btn-group-vertical > .btn-group:after, .nav:after, .navbar:after, .navbar-header:after, .navbar-collapse:after, .pager:after, .panel-body:after, .modal-header:after, .modal-footer:after, .item_buttons:after { clear: both; } .center-block { display: block; margin-left: auto; margin-right: auto; } .pull-right { float: right !important; } .pull-left { float: left !important; } .hide { display: none !important; } .show { display: block !important; } .invisible { visibility: hidden; } .text-hide { font: 0/0 a; color: transparent; text-shadow: none; background-color: transparent; border: 0; } .hidden { display: none !important; } .affix { position: fixed; } @-ms-viewport { width: device-width; } .visible-xs, .visible-sm, .visible-md, .visible-lg { display: none !important; } .visible-xs-block, .visible-xs-inline, .visible-xs-inline-block, .visible-sm-block, .visible-sm-inline, .visible-sm-inline-block, .visible-md-block, .visible-md-inline, .visible-md-inline-block, .visible-lg-block, .visible-lg-inline, .visible-lg-inline-block { display: none !important; } @media (max-width: 767px) { .visible-xs { display: block !important; } table.visible-xs { display: table !important; } tr.visible-xs { display: table-row !important; } th.visible-xs, td.visible-xs { display: table-cell !important; } } @media (max-width: 767px) { .visible-xs-block { display: block !important; } } @media (max-width: 767px) { .visible-xs-inline { display: inline !important; } } @media (max-width: 500px) { .visible-xs-inline-block { display: inline-block !important; } } @media (min-width: 600px and (max-width: 991px) { .visible-sm { display: block !important; } table.visible-sm { display: table !important; } tr.visible-sm { display: table-row !important; } th.visible-sm, td.visible-sm { display: table-cell !important; } } @media (min-width: 600px and (max-width: 991px) { .visible-sm-block { display: block !important; } } @media (min-width: 600px and (max-width: 991px) { .visible-sm-inline { display: inline !important; } } @media (min-width: 600px and (max-width: 991px) { .visible-sm-inline-block { display: inline-block !important; } } @media (min-width: 600px and (max-width: 1199px) { .visible-md { display: block !important; } table.visible-md { display: table !important; } tr.visible-md { display: table-row !important; } th.visible-md, td.visible-md { display: table-cell !important; } } @media (min-width: 600px and (max-width: 1199px) { .visible-md-block { display: block !important; } } @media (min-width: 600px and (max-width: 1199px) { .visible-md-inline { display: inline !important; } } @media (min-width: 600px and (max-width: 1199px) { .visible-md-inline-block { display: inline-block !important; } } @media (min-width: 600px { .visible-lg { display: block !important; } table.visible-lg { display: table !important; } tr.visible-lg { display: table-row !important; } th.visible-lg, td.visible-lg { display: table-cell !important; } } @media (min-width: 600px { .visible-lg-block { display: block !important; } } @media (min-width: 600px { .visible-lg-inline { display: inline !important; } } @media (min-width: 600px { .visible-lg-inline-block { display: inline-block !important; } } @media (max-width: 767px) { .hidden-xs { display: none !important; } } @media (min-width: 600px and (max-width: 991px) { .hidden-sm { display: none !important; } } @media (min-width: 600px and (max-width: 1199px) { .hidden-md { display: none !important; } } @media (min-width: 600px { .hidden-lg { display: none !important; } } .visible-print { display: none !important; } @media print { .visible-print { display: block !important; } table.visible-print { display: table !important; } tr.visible-print { display: table-row !important; } th.visible-print, td.visible-print { display: table-cell !important; } } .visible-print-block { display: none !important; } @media print { .visible-print-block { display: block !important; } } .visible-print-inline { display: none !important; } @media print { .visible-print-inline { display: inline !important; } } .visible-print-inline-block { display: none !important; } @media print { .visible-print-inline-block { display: inline-block !important; } } @media print { .hidden-print { display: none !important; } } /*! * * Font Awesome * */ /*! * Font Awesome 4.2.0 by @davegandy - http://fontawesome.io - @fontawesome * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) */ /* FONT PATH * -------------------------- */ @font-face { font-family: 'FontAwesome'; src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?v=4.2.0'); src: url('../components/font-awesome/fonts/fontawesome-webfont.eot?#iefix&v=4.2.0') format('embedded-opentype'), url('../components/font-awesome/fonts/fontawesome-webfont.woff?v=4.2.0') format('woff'), url('../components/font-awesome/fonts/fontawesome-webfont.ttf?v=4.2.0') format('truetype'), url('../components/font-awesome/fonts/fontawesome-webfont.svg?v=4.2.0#fontawesomeregular') format('svg'); font-weight: normal; font-style: normal; } .fa { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; } /* makes the font 33% larger relative to the icon container */ .fa-lg { font-size: 1.33333333em; line-height: 0.75em; vertical-align: -15%; } .fa-2x { font-size: 2em; } .fa-3x { font-size: 3em; } .fa-4x { font-size: 4em; } .fa-5x { font-size: 5em; } .fa-fw { width: 1.28571429em; text-align: center; } .fa-ul { padding-left: 0; margin-left: 2.14285714em; list-style-type: none; } .fa-ul > li { position: relative; } .fa-li { position: absolute; left: -2.14285714em; width: 2.14285714em; top: 0.14285714em; text-align: center; } .fa-li.fa-lg { left: -1.85714286em; } .fa-border { padding: .2em .25em .15em; border: solid 0.08em #eee; border-radius: .1em; } .pull-right { float: right; } .pull-left { float: left; } .fa.pull-left { margin-right: .3em; } .fa.pull-right { margin-left: .3em; } .fa-spin { -webkit-animation: fa-spin 2s infinite linear; animation: fa-spin 2s infinite linear; } @-webkit-keyframes fa-spin { 0% { -webkit-transform: rotate(0deg); transform: rotate(0deg); } 100% { -webkit-transform: rotate(359deg); transform: rotate(359deg); } } @keyframes fa-spin { 0% { -webkit-transform: rotate(0deg); transform: rotate(0deg); } 100% { -webkit-transform: rotate(359deg); transform: rotate(359deg); } } .fa-rotate-90 { filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=1); -webkit-transform: rotate(90deg); -ms-transform: rotate(90deg); transform: rotate(90deg); } .fa-rotate-180 { filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=2); -webkit-transform: rotate(180deg); -ms-transform: rotate(180deg); transform: rotate(180deg); } .fa-rotate-270 { filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=3); -webkit-transform: rotate(270deg); -ms-transform: rotate(270deg); transform: rotate(270deg); } .fa-flip-horizontal { filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1); -webkit-transform: scale(-1, 1); -ms-transform: scale(-1, 1); transform: scale(-1, 1); } .fa-flip-vertical { filter: progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1); -webkit-transform: scale(1, -1); -ms-transform: scale(1, -1); transform: scale(1, -1); } :root .fa-rotate-90, :root .fa-rotate-180, :root .fa-rotate-270, :root .fa-flip-horizontal, :root .fa-flip-vertical { filter: none; } .fa-stack { position: relative; display: inline-block; width: 2em; height: 2em; line-height: 2em; vertical-align: middle; } .fa-stack-1x, .fa-stack-2x { position: absolute; left: 0; width: 100%; text-align: center; } .fa-stack-1x { line-height: inherit; } .fa-stack-2x { font-size: 2em; } .fa-inverse { color: #fff; } /* Font Awesome uses the Unicode Private Use Area (PUA) to ensure screen readers do not read off random characters that represent icons */ .fa-glass:before { content: "\f000"; } .fa-music:before { content: "\f001"; } .fa-search:before { content: "\f002"; } .fa-envelope-o:before { content: "\f003"; } .fa-heart:before { content: "\f004"; } .fa-star:before { content: "\f005"; } .fa-star-o:before { content: "\f006"; } .fa-user:before { content: "\f007"; } .fa-film:before { content: "\f008"; } .fa-th-large:before { content: "\f009"; } .fa-th:before { content: "\f00a"; } .fa-th-list:before { content: "\f00b"; } .fa-check:before { content: "\f00c"; } .fa-remove:before, .fa-close:before, .fa-times:before { content: "\f00d"; } .fa-search-plus:before { content: "\f00e"; } .fa-search-minus:before { content: "\f010"; } .fa-power-off:before { content: "\f011"; } .fa-signal:before { content: "\f012"; } .fa-gear:before, .fa-cog:before { content: "\f013"; } .fa-trash-o:before { content: "\f014"; } .fa-home:before { content: "\f015"; } .fa-file-o:before { content: "\f016"; } .fa-clock-o:before { content: "\f017"; } .fa-road:before { content: "\f018"; } .fa-download:before { content: "\f019"; } .fa-arrow-circle-o-down:before { content: "\f01a"; } .fa-arrow-circle-o-up:before { content: "\f01b"; } .fa-inbox:before { content: "\f01c"; } .fa-play-circle-o:before { content: "\f01d"; } .fa-rotate-right:before, .fa-repeat:before { content: "\f01e"; } .fa-refresh:before { content: "\f021"; } .fa-list-alt:before { content: "\f022"; } .fa-lock:before { content: "\f023"; } .fa-flag:before { content: "\f024"; } .fa-headphones:before { content: "\f025"; } .fa-volume-off:before { content: "\f026"; } .fa-volume-down:before { content: "\f027"; } .fa-volume-up:before { content: "\f028"; } .fa-qrcode:before { content: "\f029"; } .fa-barcode:before { content: "\f02a"; } .fa-tag:before { content: "\f02b"; } .fa-tags:before { content: "\f02c"; } .fa-book:before { content: "\f02d"; } .fa-bookmark:before { content: "\f02e"; } .fa-print:before { content: "\f02f"; } .fa-camera:before { content: "\f030"; } .fa-font:before { content: "\f031"; } .fa-bold:before { content: "\f032"; } .fa-italic:before { content: "\f033"; } .fa-text-height:before { content: "\f034"; } .fa-text-width:before { content: "\f035"; } .fa-align-left:before { content: "\f036"; } .fa-align-center:before { content: "\f037"; } .fa-align-right:before { content: "\f038"; } .fa-align-justify:before { content: "\f039"; } .fa-list:before { content: "\f03a"; } .fa-dedent:before, .fa-outdent:before { content: "\f03b"; } .fa-indent:before { content: "\f03c"; } .fa-video-camera:before { content: "\f03d"; } .fa-photo:before, .fa-image:before, .fa-picture-o:before { content: "\f03e"; } .fa-pencil:before { content: "\f040"; } .fa-map-marker:before { content: "\f041"; } .fa-adjust:before { content: "\f042"; } .fa-tint:before { content: "\f043"; } .fa-edit:before, .fa-pencil-square-o:before { content: "\f044"; } .fa-share-square-o:before { content: "\f045"; } .fa-check-square-o:before { content: "\f046"; } .fa-arrows:before { content: "\f047"; } .fa-step-backward:before { content: "\f048"; } .fa-fast-backward:before { content: "\f049"; } .fa-backward:before { content: "\f04a"; } .fa-play:before { content: "\f04b"; } .fa-pause:before { content: "\f04c"; } .fa-stop:before { content: "\f04d"; } .fa-forward:before { content: "\f04e"; } .fa-fast-forward:before { content: "\f050"; } .fa-step-forward:before { content: "\f051"; } .fa-eject:before { content: "\f052"; } .fa-chevron-left:before { content: "\f053"; } .fa-chevron-right:before { content: "\f054"; } .fa-plus-circle:before { content: "\f055"; } .fa-minus-circle:before { content: "\f056"; } .fa-times-circle:before { content: "\f057"; } .fa-check-circle:before { content: "\f058"; } .fa-question-circle:before { content: "\f059"; } .fa-info-circle:before { content: "\f05a"; } .fa-crosshairs:before { content: "\f05b"; } .fa-times-circle-o:before { content: "\f05c"; } .fa-check-circle-o:before { content: "\f05d"; } .fa-ban:before { content: "\f05e"; } .fa-arrow-left:before { content: "\f060"; } .fa-arrow-right:before { content: "\f061"; } .fa-arrow-up:before { content: "\f062"; } .fa-arrow-down:before { content: "\f063"; } .fa-mail-forward:before, .fa-share:before { content: "\f064"; } .fa-expand:before { content: "\f065"; } .fa-compress:before { content: "\f066"; } .fa-plus:before { content: "\f067"; } .fa-minus:before { content: "\f068"; } .fa-asterisk:before { content: "\f069"; } .fa-exclamation-circle:before { content: "\f06a"; } .fa-gift:before { content: "\f06b"; } .fa-leaf:before { content: "\f06c"; } .fa-fire:before { content: "\f06d"; } .fa-eye:before { content: "\f06e"; } .fa-eye-slash:before { content: "\f070"; } .fa-warning:before, .fa-exclamation-triangle:before { content: "\f071"; } .fa-plane:before { content: "\f072"; } .fa-calendar:before { content: "\f073"; } .fa-random:before { content: "\f074"; } .fa-comment:before { content: "\f075"; } .fa-magnet:before { content: "\f076"; } .fa-chevron-up:before { content: "\f077"; } .fa-chevron-down:before { content: "\f078"; } .fa-retweet:before { content: "\f079"; } .fa-shopping-cart:before { content: "\f07a"; } .fa-folder:before { content: "\f07b"; } .fa-folder-open:before { content: "\f07c"; } .fa-arrows-v:before { content: "\f07d"; } .fa-arrows-h:before { content: "\f07e"; } .fa-bar-chart-o:before, .fa-bar-chart:before { content: "\f080"; } .fa-twitter-square:before { content: "\f081"; } .fa-facebook-square:before { content: "\f082"; } .fa-camera-retro:before { content: "\f083"; } .fa-key:before { content: "\f084"; } .fa-gears:before, .fa-cogs:before { content: "\f085"; } .fa-comments:before { content: "\f086"; } .fa-thumbs-o-up:before { content: "\f087"; } .fa-thumbs-o-down:before { content: "\f088"; } .fa-star-half:before { content: "\f089"; } .fa-heart-o:before { content: "\f08a"; } .fa-sign-out:before { content: "\f08b"; } .fa-linkedin-square:before { content: "\f08c"; } .fa-thumb-tack:before { content: "\f08d"; } .fa-external-link:before { content: "\f08e"; } .fa-sign-in:before { content: "\f090"; } .fa-trophy:before { content: "\f091"; } .fa-github-square:before { content: "\f092"; } .fa-upload:before { content: "\f093"; } .fa-lemon-o:before { content: "\f094"; } .fa-phone:before { content: "\f095"; } .fa-square-o:before { content: "\f096"; } .fa-bookmark-o:before { content: "\f097"; } .fa-phone-square:before { content: "\f098"; } .fa-twitter:before { content: "\f099"; } .fa-facebook:before { content: "\f09a"; } .fa-github:before { content: "\f09b"; } .fa-unlock:before { content: "\f09c"; } .fa-credit-card:before { content: "\f09d"; } .fa-rss:before { content: "\f09e"; } .fa-hdd-o:before { content: "\f0a0"; } .fa-bullhorn:before { content: "\f0a1"; } .fa-bell:before { content: "\f0f3"; } .fa-certificate:before { content: "\f0a3"; } .fa-hand-o-right:before { content: "\f0a4"; } .fa-hand-o-left:before { content: "\f0a5"; } .fa-hand-o-up:before { content: "\f0a6"; } .fa-hand-o-down:before { content: "\f0a7"; } .fa-arrow-circle-left:before { content: "\f0a8"; } .fa-arrow-circle-right:before { content: "\f0a9"; } .fa-arrow-circle-up:before { content: "\f0aa"; } .fa-arrow-circle-down:before { content: "\f0ab"; } .fa-globe:before { content: "\f0ac"; } .fa-wrench:before { content: "\f0ad"; } .fa-tasks:before { content: "\f0ae"; } .fa-filter:before { content: "\f0b0"; } .fa-briefcase:before { content: "\f0b1"; } .fa-arrows-alt:before { content: "\f0b2"; } .fa-group:before, .fa-users:before { content: "\f0c0"; } .fa-chain:before, .fa-link:before { content: "\f0c1"; } .fa-cloud:before { content: "\f0c2"; } .fa-flask:before { content: "\f0c3"; } .fa-cut:before, .fa-scissors:before { content: "\f0c4"; } .fa-copy:before, .fa-files-o:before { content: "\f0c5"; } .fa-paperclip:before { content: "\f0c6"; } .fa-save:before, .fa-floppy-o:before { content: "\f0c7"; } .fa-square:before { content: "\f0c8"; } .fa-navicon:before, .fa-reorder:before, .fa-bars:before { content: "\f0c9"; } .fa-list-ul:before { content: "\f0ca"; } .fa-list-ol:before { content: "\f0cb"; } .fa-strikethrough:before { content: "\f0cc"; } .fa-underline:before { content: "\f0cd"; } .fa-table:before { content: "\f0ce"; } .fa-magic:before { content: "\f0d0"; } .fa-truck:before { content: "\f0d1"; } .fa-pinterest:before { content: "\f0d2"; } .fa-pinterest-square:before { content: "\f0d3"; } .fa-google-plus-square:before { content: "\f0d4"; } .fa-google-plus:before { content: "\f0d5"; } .fa-money:before { content: "\f0d6"; } .fa-caret-down:before { content: "\f0d7"; } .fa-caret-up:before { content: "\f0d8"; } .fa-caret-left:before { content: "\f0d9"; } .fa-caret-right:before { content: "\f0da"; } .fa-columns:before { content: "\f0db"; } .fa-unsorted:before, .fa-sort:before { content: "\f0dc"; } .fa-sort-down:before, .fa-sort-desc:before { content: "\f0dd"; } .fa-sort-up:before, .fa-sort-asc:before { content: "\f0de"; } .fa-envelope:before { content: "\f0e0"; } .fa-linkedin:before { content: "\f0e1"; } .fa-rotate-left:before, .fa-undo:before { content: "\f0e2"; } .fa-legal:before, .fa-gavel:before { content: "\f0e3"; } .fa-dashboard:before, .fa-tachometer:before { content: "\f0e4"; } .fa-comment-o:before { content: "\f0e5"; } .fa-comments-o:before { content: "\f0e6"; } .fa-flash:before, .fa-bolt:before { content: "\f0e7"; } .fa-sitemap:before { content: "\f0e8"; } .fa-umbrella:before { content: "\f0e9"; } .fa-paste:before, .fa-clipboard:before { content: "\f0ea"; } .fa-lightbulb-o:before { content: "\f0eb"; } .fa-exchange:before { content: "\f0ec"; } .fa-cloud-download:before { content: "\f0ed"; } .fa-cloud-upload:before { content: "\f0ee"; } .fa-user-md:before { content: "\f0f0"; } .fa-stethoscope:before { content: "\f0f1"; } .fa-suitcase:before { content: "\f0f2"; } .fa-bell-o:before { content: "\f0a2"; } .fa-coffee:before { content: "\f0f4"; } .fa-cutlery:before { content: "\f0f5"; } .fa-file-text-o:before { content: "\f0f6"; } .fa-building-o:before { content: "\f0f7"; } .fa-hospital-o:before { content: "\f0f8"; } .fa-ambulance:before { content: "\f0f9"; } .fa-medkit:before { content: "\f0fa"; } .fa-fighter-jet:before { content: "\f0fb"; } .fa-beer:before { content: "\f0fc"; } .fa-h-square:before { content: "\f0fd"; } .fa-plus-square:before { content: "\f0fe"; } .fa-angle-double-left:before { content: "\f100"; } .fa-angle-double-right:before { content: "\f101"; } .fa-angle-double-up:before { content: "\f102"; } .fa-angle-double-down:before { content: "\f103"; } .fa-angle-left:before { content: "\f104"; } .fa-angle-right:before { content: "\f105"; } .fa-angle-up:before { content: "\f106"; } .fa-angle-down:before { content: "\f107"; } .fa-desktop:before { content: "\f108"; } .fa-laptop:before { content: "\f109"; } .fa-tablet:before { content: "\f10a"; } .fa-mobile-phone:before, .fa-mobile:before { content: "\f10b"; } .fa-circle-o:before { content: "\f10c"; } .fa-quote-left:before { content: "\f10d"; } .fa-quote-right:before { content: "\f10e"; } .fa-spinner:before { content: "\f110"; } .fa-circle:before { content: "\f111"; } .fa-mail-reply:before, .fa-reply:before { content: "\f112"; } .fa-github-alt:before { content: "\f113"; } .fa-folder-o:before { content: "\f114"; } .fa-folder-open-o:before { content: "\f115"; } .fa-smile-o:before { content: "\f118"; } .fa-frown-o:before { content: "\f119"; } .fa-meh-o:before { content: "\f11a"; } .fa-gamepad:before { content: "\f11b"; } .fa-keyboard-o:before { content: "\f11c"; } .fa-flag-o:before { content: "\f11d"; } .fa-flag-checkered:before { content: "\f11e"; } .fa-terminal:before { content: "\f120"; } .fa-code:before { content: "\f121"; } .fa-mail-reply-all:before, .fa-reply-all:before { content: "\f122"; } .fa-star-half-empty:before, .fa-star-half-full:before, .fa-star-half-o:before { content: "\f123"; } .fa-location-arrow:before { content: "\f124"; } .fa-crop:before { content: "\f125"; } .fa-code-fork:before { content: "\f126"; } .fa-unlink:before, .fa-chain-broken:before { content: "\f127"; } .fa-question:before { content: "\f128"; } .fa-info:before { content: "\f129"; } .fa-exclamation:before { content: "\f12a"; } .fa-superscript:before { content: "\f12b"; } .fa-subscript:before { content: "\f12c"; } .fa-eraser:before { content: "\f12d"; } .fa-puzzle-piece:before { content: "\f12e"; } .fa-microphone:before { content: "\f130"; } .fa-microphone-slash:before { content: "\f131"; } .fa-shield:before { content: "\f132"; } .fa-calendar-o:before { content: "\f133"; } .fa-fire-extinguisher:before { content: "\f134"; } .fa-rocket:before { content: "\f135"; } .fa-maxcdn:before { content: "\f136"; } .fa-chevron-circle-left:before { content: "\f137"; } .fa-chevron-circle-right:before { content: "\f138"; } .fa-chevron-circle-up:before { content: "\f139"; } .fa-chevron-circle-down:before { content: "\f13a"; } .fa-html5:before { content: "\f13b"; } .fa-css3:before { content: "\f13c"; } .fa-anchor:before { content: "\f13d"; } .fa-unlock-alt:before { content: "\f13e"; } .fa-bullseye:before { content: "\f140"; } .fa-ellipsis-h:before { content: "\f141"; } .fa-ellipsis-v:before { content: "\f142"; } .fa-rss-square:before { content: "\f143"; } .fa-play-circle:before { content: "\f144"; } .fa-ticket:before { content: "\f145"; } .fa-minus-square:before { content: "\f146"; } .fa-minus-square-o:before { content: "\f147"; } .fa-level-up:before { content: "\f148"; } .fa-level-down:before { content: "\f149"; } .fa-check-square:before { content: "\f14a"; } .fa-pencil-square:before { content: "\f14b"; } .fa-external-link-square:before { content: "\f14c"; } .fa-share-square:before { content: "\f14d"; } .fa-compass:before { content: "\f14e"; } .fa-toggle-down:before, .fa-caret-square-o-down:before { content: "\f150"; } .fa-toggle-up:before, .fa-caret-square-o-up:before { content: "\f151"; } .fa-toggle-right:before, .fa-caret-square-o-right:before { content: "\f152"; } .fa-euro:before, .fa-eur:before { content: "\f153"; } .fa-gbp:before { content: "\f154"; } .fa-dollar:before, .fa-usd:before { content: "\f155"; } .fa-rupee:before, .fa-inr:before { content: "\f156"; } .fa-cny:before, .fa-rmb:before, .fa-yen:before, .fa-jpy:before { content: "\f157"; } .fa-ruble:before, .fa-rouble:before, .fa-rub:before { content: "\f158"; } .fa-won:before, .fa-krw:before { content: "\f159"; } .fa-bitcoin:before, .fa-btc:before { content: "\f15a"; } .fa-file:before { content: "\f15b"; } .fa-file-text:before { content: "\f15c"; } .fa-sort-alpha-asc:before { content: "\f15d"; } .fa-sort-alpha-desc:before { content: "\f15e"; } .fa-sort-amount-asc:before { content: "\f160"; } .fa-sort-amount-desc:before { content: "\f161"; } .fa-sort-numeric-asc:before { content: "\f162"; } .fa-sort-numeric-desc:before { content: "\f163"; } .fa-thumbs-up:before { content: "\f164"; } .fa-thumbs-down:before { content: "\f165"; } .fa-youtube-square:before { content: "\f166"; } .fa-youtube:before { content: "\f167"; } .fa-xing:before { content: "\f168"; } .fa-xing-square:before { content: "\f169"; } .fa-youtube-play:before { content: "\f16a"; } .fa-dropbox:before { content: "\f16b"; } .fa-stack-overflow:before { content: "\f16c"; } .fa-instagram:before { content: "\f16d"; } .fa-flickr:before { content: "\f16e"; } .fa-adn:before { content: "\f170"; } .fa-bitbucket:before { content: "\f171"; } .fa-bitbucket-square:before { content: "\f172"; } .fa-tumblr:before { content: "\f173"; } .fa-tumblr-square:before { content: "\f174"; } .fa-long-arrow-down:before { content: "\f175"; } .fa-long-arrow-up:before { content: "\f176"; } .fa-long-arrow-left:before { content: "\f177"; } .fa-long-arrow-right:before { content: "\f178"; } .fa-apple:before { content: "\f179"; } .fa-windows:before { content: "\f17a"; } .fa-android:before { content: "\f17b"; } .fa-linux:before { content: "\f17c"; } .fa-dribbble:before { content: "\f17d"; } .fa-skype:before { content: "\f17e"; } .fa-foursquare:before { content: "\f180"; } .fa-trello:before { content: "\f181"; } .fa-female:before { content: "\f182"; } .fa-male:before { content: "\f183"; } .fa-gittip:before { content: "\f184"; } .fa-sun-o:before { content: "\f185"; } .fa-moon-o:before { content: "\f186"; } .fa-archive:before { content: "\f187"; } .fa-bug:before { content: "\f188"; } .fa-vk:before { content: "\f189"; } .fa-weibo:before { content: "\f18a"; } .fa-renren:before { content: "\f18b"; } .fa-pagelines:before { content: "\f18c"; } .fa-stack-exchange:before { content: "\f18d"; } .fa-arrow-circle-o-right:before { content: "\f18e"; } .fa-arrow-circle-o-left:before { content: "\f190"; } .fa-toggle-left:before, .fa-caret-square-o-left:before { content: "\f191"; } .fa-dot-circle-o:before { content: "\f192"; } .fa-wheelchair:before { content: "\f193"; } .fa-vimeo-square:before { content: "\f194"; } .fa-turkish-lira:before, .fa-try:before { content: "\f195"; } .fa-plus-square-o:before { content: "\f196"; } .fa-space-shuttle:before { content: "\f197"; } .fa-slack:before { content: "\f198"; } .fa-envelope-square:before { content: "\f199"; } .fa-wordpress:before { content: "\f19a"; } .fa-openid:before { content: "\f19b"; } .fa-institution:before, .fa-bank:before, .fa-university:before { content: "\f19c"; } .fa-mortar-board:before, .fa-graduation-cap:before { content: "\f19d"; } .fa-yahoo:before { content: "\f19e"; } .fa-google:before { content: "\f1a0"; } .fa-reddit:before { content: "\f1a1"; } .fa-reddit-square:before { content: "\f1a2"; } .fa-stumbleupon-circle:before { content: "\f1a3"; } .fa-stumbleupon:before { content: "\f1a4"; } .fa-delicious:before { content: "\f1a5"; } .fa-digg:before { content: "\f1a6"; } .fa-pied-piper:before { content: "\f1a7"; } .fa-pied-piper-alt:before { content: "\f1a8"; } .fa-drupal:before { content: "\f1a9"; } .fa-joomla:before { content: "\f1aa"; } .fa-language:before { content: "\f1ab"; } .fa-fax:before { content: "\f1ac"; } .fa-building:before { content: "\f1ad"; } .fa-child:before { content: "\f1ae"; } .fa-paw:before { content: "\f1b0"; } .fa-spoon:before { content: "\f1b1"; } .fa-cube:before { content: "\f1b2"; } .fa-cubes:before { content: "\f1b3"; } .fa-behance:before { content: "\f1b4"; } .fa-behance-square:before { content: "\f1b5"; } .fa-steam:before { content: "\f1b6"; } .fa-steam-square:before { content: "\f1b7"; } .fa-recycle:before { content: "\f1b8"; } .fa-automobile:before, .fa-car:before { content: "\f1b9"; } .fa-cab:before, .fa-taxi:before { content: "\f1ba"; } .fa-tree:before { content: "\f1bb"; } .fa-spotify:before { content: "\f1bc"; } .fa-deviantart:before { content: "\f1bd"; } .fa-soundcloud:before { content: "\f1be"; } .fa-database:before { content: "\f1c0"; } .fa-file-pdf-o:before { content: "\f1c1"; } .fa-file-word-o:before { content: "\f1c2"; } .fa-file-excel-o:before { content: "\f1c3"; } .fa-file-powerpoint-o:before { content: "\f1c4"; } .fa-file-photo-o:before, .fa-file-picture-o:before, .fa-file-image-o:before { content: "\f1c5"; } .fa-file-zip-o:before, .fa-file-archive-o:before { content: "\f1c6"; } .fa-file-sound-o:before, .fa-file-audio-o:before { content: "\f1c7"; } .fa-file-movie-o:before, .fa-file-video-o:before { content: "\f1c8"; } .fa-file-code-o:before { content: "\f1c9"; } .fa-vine:before { content: "\f1ca"; } .fa-codepen:before { content: "\f1cb"; } .fa-jsfiddle:before { content: "\f1cc"; } .fa-life-bouy:before, .fa-life-buoy:before, .fa-life-saver:before, .fa-support:before, .fa-life-ring:before { content: "\f1cd"; } .fa-circle-o-notch:before { content: "\f1ce"; } .fa-ra:before, .fa-rebel:before { content: "\f1d0"; } .fa-ge:before, .fa-empire:before { content: "\f1d1"; } .fa-git-square:before { content: "\f1d2"; } .fa-git:before { content: "\f1d3"; } .fa-hacker-news:before { content: "\f1d4"; } .fa-tencent-weibo:before { content: "\f1d5"; } .fa-qq:before { content: "\f1d6"; } .fa-wechat:before, .fa-weixin:before { content: "\f1d7"; } .fa-send:before, .fa-paper-plane:before { content: "\f1d8"; } .fa-send-o:before, .fa-paper-plane-o:before { content: "\f1d9"; } .fa-history:before { content: "\f1da"; } .fa-circle-thin:before { content: "\f1db"; } .fa-header:before { content: "\f1dc"; } .fa-paragraph:before { content: "\f1dd"; } .fa-sliders:before { content: "\f1de"; } .fa-share-alt:before { content: "\f1e0"; } .fa-share-alt-square:before { content: "\f1e1"; } .fa-bomb:before { content: "\f1e2"; } .fa-soccer-ball-o:before, .fa-futbol-o:before { content: "\f1e3"; } .fa-tty:before { content: "\f1e4"; } .fa-binoculars:before { content: "\f1e5"; } .fa-plug:before { content: "\f1e6"; } .fa-slideshare:before { content: "\f1e7"; } .fa-twitch:before { content: "\f1e8"; } .fa-yelp:before { content: "\f1e9"; } .fa-newspaper-o:before { content: "\f1ea"; } .fa-wifi:before { content: "\f1eb"; } .fa-calculator:before { content: "\f1ec"; } .fa-paypal:before { content: "\f1ed"; } .fa-google-wallet:before { content: "\f1ee"; } .fa-cc-visa:before { content: "\f1f0"; } .fa-cc-mastercard:before { content: "\f1f1"; } .fa-cc-discover:before { content: "\f1f2"; } .fa-cc-amex:before { content: "\f1f3"; } .fa-cc-paypal:before { content: "\f1f4"; } .fa-cc-stripe:before { content: "\f1f5"; } .fa-bell-slash:before { content: "\f1f6"; } .fa-bell-slash-o:before { content: "\f1f7"; } .fa-trash:before { content: "\f1f8"; } .fa-copyright:before { content: "\f1f9"; } .fa-at:before { content: "\f1fa"; } .fa-eyedropper:before { content: "\f1fb"; } .fa-paint-brush:before { content: "\f1fc"; } .fa-birthday-cake:before { content: "\f1fd"; } .fa-area-chart:before { content: "\f1fe"; } .fa-pie-chart:before { content: "\f200"; } .fa-line-chart:before { content: "\f201"; } .fa-lastfm:before { content: "\f202"; } .fa-lastfm-square:before { content: "\f203"; } .fa-toggle-off:before { content: "\f204"; } .fa-toggle-on:before { content: "\f205"; } .fa-bicycle:before { content: "\f206"; } .fa-bus:before { content: "\f207"; } .fa-ioxhost:before { content: "\f208"; } .fa-angellist:before { content: "\f209"; } .fa-cc:before { content: "\f20a"; } .fa-shekel:before, .fa-sheqel:before, .fa-ils:before { content: "\f20b"; } .fa-meanpath:before { content: "\f20c"; } /*! * * IPython base * */ .modal.fade .modal-dialog { -webkit-transform: translate(0, 0); -ms-transform: translate(0, 0); -o-transform: translate(0, 0); transform: translate(0, 0); } code { color: #000; } pre { font-size: inherit; line-height: inherit; } label { font-weight: normal; } /* Make the page background atleast 100% the height of the view port */ /* Make the page itself atleast 70% the height of the view port */ .border-box-sizing { box-sizing: border-box; -moz-box-sizing: border-box; -webkit-box-sizing: border-box; } .corner-all { border-radius: 2px; } .no-padding { padding: 0px; } /* Flexible box model classes */ /* Taken from Alex Russell http://infrequently.org/2009/08/css-3-progress/ */ /* This file is a compatability layer. It allows the usage of flexible box model layouts accross multiple browsers, including older browsers. The newest, universal implementation of the flexible box model is used when available (see `Modern browsers` comments below). Browsers that are known to implement this new spec completely include: Firefox 28.0+ Chrome 29.0+ Internet Explorer 11+ Opera 17.0+ Browsers not listed, including Safari, are supported via the styling under the `Old browsers` comments below. */ .hbox { /* Old browsers */ display: -webkit-box; -webkit-box-orient: horizontal; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: horizontal; -moz-box-align: stretch; display: box; box-orient: horizontal; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: row; align-items: stretch; } .hbox > * { /* Old browsers */ -webkit-box-flex: 0; -moz-box-flex: 0; box-flex: 0; /* Modern browsers */ flex: none; } .vbox { /* Old browsers */ display: -webkit-box; -webkit-box-orient: vertical; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: vertical; -moz-box-align: stretch; display: box; box-orient: vertical; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: column; align-items: stretch; } .vbox > * { /* Old browsers */ -webkit-box-flex: 0; -moz-box-flex: 0; box-flex: 0; /* Modern browsers */ flex: none; } .hbox.reverse, .vbox.reverse, .reverse { /* Old browsers */ -webkit-box-direction: reverse; -moz-box-direction: reverse; box-direction: reverse; /* Modern browsers */ flex-direction: row-reverse; } .hbox.box-flex0, .vbox.box-flex0, .box-flex0 { /* Old browsers */ -webkit-box-flex: 0; -moz-box-flex: 0; box-flex: 0; /* Modern browsers */ flex: none; width: auto; } .hbox.box-flex1, .vbox.box-flex1, .box-flex1 { /* Old browsers */ -webkit-box-flex: 1; -moz-box-flex: 1; box-flex: 1; /* Modern browsers */ flex: 1; } .hbox.box-flex, .vbox.box-flex, .box-flex { /* Old browsers */ /* Old browsers */ -webkit-box-flex: 1; -moz-box-flex: 1; box-flex: 1; /* Modern browsers */ flex: 1; } .hbox.box-flex2, .vbox.box-flex2, .box-flex2 { /* Old browsers */ -webkit-box-flex: 2; -moz-box-flex: 2; box-flex: 2; /* Modern browsers */ flex: 2; } .box-group1 { /* Deprecated */ -webkit-box-flex-group: 1; -moz-box-flex-group: 1; box-flex-group: 1; } .box-group2 { /* Deprecated */ -webkit-box-flex-group: 2; -moz-box-flex-group: 2; box-flex-group: 2; } .hbox.start, .vbox.start, .start { /* Old browsers */ -webkit-box-pack: start; -moz-box-pack: start; box-pack: start; /* Modern browsers */ justify-content: flex-start; } .hbox.end, .vbox.end, .end { /* Old browsers */ -webkit-box-pack: end; -moz-box-pack: end; box-pack: end; /* Modern browsers */ justify-content: flex-end; } .hbox.center, .vbox.center, .center { /* Old browsers */ -webkit-box-pack: center; -moz-box-pack: center; box-pack: center; /* Modern browsers */ justify-content: center; } .hbox.baseline, .vbox.baseline, .baseline { /* Old browsers */ -webkit-box-pack: baseline; -moz-box-pack: baseline; box-pack: baseline; /* Modern browsers */ justify-content: baseline; } .hbox.stretch, .vbox.stretch, .stretch { /* Old browsers */ -webkit-box-pack: stretch; -moz-box-pack: stretch; box-pack: stretch; /* Modern browsers */ justify-content: stretch; } .hbox.align-start, .vbox.align-start, .align-start { /* Old browsers */ -webkit-box-align: start; -moz-box-align: start; box-align: start; /* Modern browsers */ align-items: flex-start; } .hbox.align-end, .vbox.align-end, .align-end { /* Old browsers */ -webkit-box-align: end; -moz-box-align: end; box-align: end; /* Modern browsers */ align-items: flex-end; } .hbox.align-center, .vbox.align-center, .align-center { /* Old browsers */ -webkit-box-align: center; -moz-box-align: center; box-align: center; /* Modern browsers */ align-items: center; } .hbox.align-baseline, .vbox.align-baseline, .align-baseline { /* Old browsers */ -webkit-box-align: baseline; -moz-box-align: baseline; box-align: baseline; /* Modern browsers */ align-items: baseline; } .hbox.align-stretch, .vbox.align-stretch, .align-stretch { /* Old browsers */ -webkit-box-align: stretch; -moz-box-align: stretch; box-align: stretch; /* Modern browsers */ align-items: stretch; } div.error { margin: 2em; text-align: center; } div.error > h1 { font-size: 500%; line-height: normal; } div.error > p { font-size: 200%; line-height: normal; } div.traceback-wrapper { text-align: left; max-width: 800px; margin: auto; } /** * Primary styles * * Author: Jupyter Development Team */ body { background-color: #fff; /* This makes sure that the body covers the entire window and needs to be in a different element than the display: box in wrapper below */ position: absolute; left: 0px; right: 0px; top: 0px; bottom: 0px; overflow: visible; } body > #header { /* Initially hidden to prevent FLOUC */ display: none; background-color: #fff; /* Display over codemirror */ position: relative; z-index: 100; } body > #header #header-container { padding-bottom: 5px; padding-top: 5px; box-sizing: border-box; -moz-box-sizing: border-box; -webkit-box-sizing: border-box; } body > #header .header-bar { width: 100%; height: 1px; background: #e7e7e7; margin-bottom: -1px; } @media print { body > #header { display: none !important; } } #header-spacer { width: 100%; visibility: hidden; } @media print { #header-spacer { display: none; } } #ipython_notebook { padding-left: 0px; padding-top: 1px; padding-bottom: 1px; } @media (max-width: 991px) { #ipython_notebook { margin-left: 10px; } } [dir="rtl"] #ipython_notebook { float: right !important; } #noscript { width: auto; padding-top: 16px; padding-bottom: 16px; text-align: center; font-size: 22px; color: red; font-weight: bold; } #ipython_notebook img { height: 28px; } #site { width: 100%; display: none; box-sizing: border-box; -moz-box-sizing: border-box; -webkit-box-sizing: border-box; overflow: auto; } @media print { #site { height: auto !important; } } /* Smaller buttons */ .ui-button .ui-button-text { padding: 0.2em 0.8em; font-size: 77%; } input.ui-button { padding: 0.3em 0.9em; } span#login_widget { float: right; } span#login_widget > .button, #logout { color: #333; background-color: #fff; border-color: #ccc; } span#login_widget > .button:focus, #logout:focus, span#login_widget > .button.focus, #logout.focus { color: #333; background-color: #e6e6e6; border-color: #8c8c8c; } span#login_widget > .button:hover, #logout:hover { color: #333; background-color: #e6e6e6; border-color: #adadad; } span#login_widget > .button:active, #logout:active, span#login_widget > .button.active, #logout.active, .open > .dropdown-togglespan#login_widget > .button, .open > .dropdown-toggle#logout { color: #333; background-color: #e6e6e6; border-color: #adadad; } span#login_widget > .button:active:hover, #logout:active:hover, span#login_widget > .button.active:hover, #logout.active:hover, .open > .dropdown-togglespan#login_widget > .button:hover, .open > .dropdown-toggle#logout:hover, span#login_widget > .button:active:focus, #logout:active:focus, span#login_widget > .button.active:focus, #logout.active:focus, .open > .dropdown-togglespan#login_widget > .button:focus, .open > .dropdown-toggle#logout:focus, span#login_widget > .button:active.focus, #logout:active.focus, span#login_widget > .button.active.focus, #logout.active.focus, .open > .dropdown-togglespan#login_widget > .button.focus, .open > .dropdown-toggle#logout.focus { color: #333; background-color: #d4d4d4; border-color: #8c8c8c; } span#login_widget > .button:active, #logout:active, span#login_widget > .button.active, #logout.active, .open > .dropdown-togglespan#login_widget > .button, .open > .dropdown-toggle#logout { background-image: none; } span#login_widget > .button.disabled:hover, #logout.disabled:hover, span#login_widget > .button[disabled]:hover, #logout[disabled]:hover, fieldset[disabled] span#login_widget > .button:hover, fieldset[disabled] #logout:hover, span#login_widget > .button.disabled:focus, #logout.disabled:focus, span#login_widget > .button[disabled]:focus, #logout[disabled]:focus, fieldset[disabled] span#login_widget > .button:focus, fieldset[disabled] #logout:focus, span#login_widget > .button.disabled.focus, #logout.disabled.focus, span#login_widget > .button[disabled].focus, #logout[disabled].focus, fieldset[disabled] span#login_widget > .button.focus, fieldset[disabled] #logout.focus { background-color: #fff; border-color: #ccc; } span#login_widget > .button .badge, #logout .badge { color: #fff; background-color: #333; } .nav-header { text-transform: none; } #header > span { margin-top: 10px; } .modal_stretch .modal-dialog { /* Old browsers */ display: -webkit-box; -webkit-box-orient: vertical; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: vertical; -moz-box-align: stretch; display: box; box-orient: vertical; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: column; align-items: stretch; min-height: 80vh; } .modal_stretch .modal-dialog .modal-body { max-height: calc(100vh - 200px); overflow: auto; flex: 1; } @media (min-width: 600px { .modal .modal-dialog { width: 700px; } } @media (min-width: 600px { select.form-control { margin-left: 12px; margin-right: 12px; } } /*! * * IPython auth * */ .center-nav { display: inline-block; margin-bottom: -4px; } /*! * * IPython tree view * */ /* We need an invisible input field on top of the sentense*/ /* "Drag file onto the list ..." */ .alternate_upload { background-color: none; display: inline; } .alternate_upload.form { padding: 0; margin: 0; } .alternate_upload input.fileinput { text-align: center; vertical-align: middle; display: inline; opacity: 0; z-index: 2; width: 12ex; margin-right: -12ex; } .alternate_upload .btn-upload { height: 22px; } /** * Primary styles * * Author: Jupyter Development Team */ [dir="rtl"] #tabs li { float: right; } ul#tabs { margin-bottom: 4px; } [dir="rtl"] ul#tabs { margin-right: 0px; } ul#tabs a { padding-top: 6px; padding-bottom: 4px; } ul.breadcrumb a:focus, ul.breadcrumb a:hover { text-decoration: none; } ul.breadcrumb i.icon-home { font-size: 16px; margin-right: 4px; } ul.breadcrumb span { color: #5e5e5e; } .list_toolbar { padding: 4px 0 4px 0; vertical-align: middle; } .list_toolbar .tree-buttons { padding-top: 1px; } [dir="rtl"] .list_toolbar .tree-buttons { float: left !important; } [dir="rtl"] .list_toolbar .pull-right { padding-top: 1px; float: left !important; } [dir="rtl"] .list_toolbar .pull-left { float: right !important; } .dynamic-buttons { padding-top: 3px; display: inline-block; } .list_toolbar [class*="span"] { min-height: 24px; } .list_header { font-weight: bold; background-color: #EEE; } .list_placeholder { font-weight: bold; padding-top: 4px; padding-bottom: 4px; padding-left: 7px; padding-right: 7px; } .list_container { margin-top: 4px; margin-bottom: 20px; border: 1px solid #ddd; border-radius: 2px; } .list_container > div { border-bottom: 1px solid #ddd; } .list_container > div:hover .list-item { background-color: red; } .list_container > div:last-child { border: none; } .list_item:hover .list_item { background-color: #ddd; } .list_item a { text-decoration: none; } .list_item:hover { background-color: #fafafa; } .list_header > div, .list_item > div { padding-top: 4px; padding-bottom: 4px; padding-left: 7px; padding-right: 7px; line-height: 22px; } .list_header > div input, .list_item > div input { margin-right: 7px; margin-left: 14px; vertical-align: baseline; line-height: 22px; position: relative; top: -1px; } .list_header > div .item_link, .list_item > div .item_link { margin-left: -1px; vertical-align: baseline; line-height: 22px; } .new-file input[type=checkbox] { visibility: hidden; } .item_name { line-height: 22px; height: 24px; } .item_icon { font-size: 14px; color: #5e5e5e; margin-right: 7px; margin-left: 7px; line-height: 22px; vertical-align: baseline; } .item_buttons { line-height: 1em; margin-left: -5px; } .item_buttons .btn, .item_buttons .btn-group, .item_buttons .input-group { float: left; } .item_buttons > .btn, .item_buttons > .btn-group, .item_buttons > .input-group { margin-left: 5px; } .item_buttons .btn { min-width: 13ex; } .item_buttons .running-indicator { padding-top: 4px; color: #5cb85c; } .item_buttons .kernel-name { padding-top: 4px; color: #5bc0de; margin-right: 7px; float: left; } .toolbar_info { height: 24px; line-height: 24px; } .list_item input:not([type=checkbox]) { padding-top: 3px; padding-bottom: 3px; height: 22px; line-height: 14px; margin: 0px; } .highlight_text { color: blue; } #project_name { display: inline-block; padding-left: 7px; margin-left: -2px; } #project_name > .breadcrumb { padding: 0px; margin-bottom: 0px; background-color: transparent; font-weight: bold; } #tree-selector { padding-right: 0px; } [dir="rtl"] #tree-selector a { float: right; } #button-select-all { min-width: 50px; } #select-all { margin-left: 7px; margin-right: 2px; } .menu_icon { margin-right: 2px; } .tab-content .row { margin-left: 0px; margin-right: 0px; } .folder_icon:before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; content: "\f114"; } .folder_icon:before.pull-left { margin-right: .3em; } .folder_icon:before.pull-right { margin-left: .3em; } .notebook_icon:before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; content: "\f02d"; position: relative; top: -1px; } .notebook_icon:before.pull-left { margin-right: .3em; } .notebook_icon:before.pull-right { margin-left: .3em; } .running_notebook_icon:before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; content: "\f02d"; position: relative; top: -1px; color: #5cb85c; } .running_notebook_icon:before.pull-left { margin-right: .3em; } .running_notebook_icon:before.pull-right { margin-left: .3em; } .file_icon:before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; content: "\f016"; position: relative; top: -2px; } .file_icon:before.pull-left { margin-right: .3em; } .file_icon:before.pull-right { margin-left: .3em; } #notebook_toolbar .pull-right { padding-top: 0px; margin-right: -1px; } ul#new-menu { left: auto; right: 0; } [dir="rtl"] #new-menu { text-align: right; } .kernel-menu-icon { padding-right: 12px; width: 24px; content: "\f096"; } .kernel-menu-icon:before { content: "\f096"; } .kernel-menu-icon-current:before { content: "\f00c"; } #tab_content { padding-top: 20px; } #running .panel-group .panel { margin-top: 3px; margin-bottom: 1em; } #running .panel-group .panel .panel-heading { background-color: #EEE; padding-top: 4px; padding-bottom: 4px; padding-left: 7px; padding-right: 7px; line-height: 22px; } #running .panel-group .panel .panel-heading a:focus, #running .panel-group .panel .panel-heading a:hover { text-decoration: none; } #running .panel-group .panel .panel-body { padding: 0px; } #running .panel-group .panel .panel-body .list_container { margin-top: 0px; margin-bottom: 0px; border: 0px; border-radius: 0px; } #running .panel-group .panel .panel-body .list_container .list_item { border-bottom: 1px solid #ddd; } #running .panel-group .panel .panel-body .list_container .list_item:last-child { border-bottom: 0px; } [dir="rtl"] #running .col-sm-8 { float: right !important; } .delete-button { display: none; } .duplicate-button { display: none; } .rename-button { display: none; } .shutdown-button { display: none; } .dynamic-instructions { display: inline-block; padding-top: 4px; } /*! * * IPython text editor webapp * */ .selected-keymap i.fa { padding: 0px 5px; } .selected-keymap i.fa:before { content: "\f00c"; } #mode-menu { overflow: auto; max-height: 20em; } .edit_app #header { -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); } .edit_app #menubar .navbar { /* Use a negative 1 bottom margin, so the border overlaps the border of the header */ margin-bottom: -1px; } .dirty-indicator { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; width: 20px; } .dirty-indicator.pull-left { margin-right: .3em; } .dirty-indicator.pull-right { margin-left: .3em; } .dirty-indicator-dirty { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; width: 20px; } .dirty-indicator-dirty.pull-left { margin-right: .3em; } .dirty-indicator-dirty.pull-right { margin-left: .3em; } .dirty-indicator-clean { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; width: 20px; } .dirty-indicator-clean.pull-left { margin-right: .3em; } .dirty-indicator-clean.pull-right { margin-left: .3em; } .dirty-indicator-clean:before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; content: "\f00c"; } .dirty-indicator-clean:before.pull-left { margin-right: .3em; } .dirty-indicator-clean:before.pull-right { margin-left: .3em; } #filename { font-size: 16pt; display: table; padding: 0px 5px; } #current-mode { padding-left: 5px; padding-right: 5px; } #texteditor-backdrop { padding-top: 20px; padding-bottom: 20px; } @media not print { #texteditor-backdrop { background-color: #EEE; } } @media print { #texteditor-backdrop #texteditor-container .CodeMirror-gutter, #texteditor-backdrop #texteditor-container .CodeMirror-gutters { background-color: #fff; } } @media not print { #texteditor-backdrop #texteditor-container .CodeMirror-gutter, #texteditor-backdrop #texteditor-container .CodeMirror-gutters { background-color: #fff; } } @media not print { #texteditor-backdrop #texteditor-container { padding: 0px; background-color: #fff; -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); } } /*! * * IPython notebook * */ /* CSS font colors for translated ANSI colors. */ .ansibold { font-weight: bold; } /* use dark versions for foreground, to improve visibility */ .ansiblack { color: black; } .ansired { color: darkred; } .ansigreen { color: darkgreen; } .ansiyellow { color: #c4a000; } .ansiblue { color: darkblue; } .ansipurple { color: darkviolet; } .ansicyan { color: steelblue; } .ansigray { color: gray; } /* and light for background, for the same reason */ .ansibgblack { background-color: black; } .ansibgred { background-color: red; } .ansibggreen { background-color: green; } .ansibgyellow { background-color: yellow; } .ansibgblue { background-color: blue; } .ansibgpurple { background-color: magenta; } .ansibgcyan { background-color: cyan; } .ansibggray { background-color: gray; } div.cell { /* Old browsers */ display: -webkit-box; -webkit-box-orient: vertical; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: vertical; -moz-box-align: stretch; display: box; box-orient: vertical; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: column; align-items: stretch; border-radius: 2px; box-sizing: border-box; -moz-box-sizing: border-box; -webkit-box-sizing: border-box; border-width: 1px; border-style: solid; border-color: transparent; width: 100%; padding: 5px; /* This acts as a spacer between cells, that is outside the border */ margin: 0px; outline: none; border-left-width: 1px; padding-left: 5px; background: linear-gradient(to right, transparent -40px, transparent 1px, transparent 1px, transparent 100%); } div.cell.jupyter-soft-selected { border-left-color: #90CAF9; border-left-color: #E3F2FD; border-left-width: 1px; padding-left: 5px; border-right-color: #E3F2FD; border-right-width: 1px; background: #E3F2FD; } @media print { div.cell.jupyter-soft-selected { border-color: transparent; } } div.cell.selected { border-color: #ababab; border-left-width: 0px; padding-left: 6px; background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 5px, transparent 5px, transparent 100%); } @media print { div.cell.selected { border-color: transparent; } } div.cell.selected.jupyter-soft-selected { border-left-width: 0; padding-left: 6px; background: linear-gradient(to right, #42A5F5 -40px, #42A5F5 7px, #E3F2FD 7px, #E3F2FD 100%); } .edit_mode div.cell.selected { border-color: #66BB6A; border-left-width: 0px; padding-left: 6px; background: linear-gradient(to right, #66BB6A -40px, #66BB6A 5px, transparent 5px, transparent 100%); } @media print { .edit_mode div.cell.selected { border-color: transparent; } } .prompt { /* This needs to be wide enough for 3 digit prompt numbers: In[100]: */ min-width: 14ex; /* This padding is tuned to match the padding on the CodeMirror editor. */ padding: 0.4em; margin: 0px; font-family: monospace; text-align: right; /* This has to match that of the the CodeMirror class line-height below */ line-height: 1.21429em; /* Don't highlight prompt number selection */ -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; /* Use default cursor */ cursor: default; } @media (max-width: 540px) { .prompt { text-align: left; } } div.inner_cell { min-width: 0; /* Old browsers */ display: -webkit-box; -webkit-box-orient: vertical; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: vertical; -moz-box-align: stretch; display: box; box-orient: vertical; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: column; align-items: stretch; /* Old browsers */ -webkit-box-flex: 1; -moz-box-flex: 1; box-flex: 1; /* Modern browsers */ flex: 1; } /* input_area and input_prompt must match in top border and margin for alignment */ div.input_area { border: 1px solid #cfcfcf; border-radius: 2px; background: #f7f7f7; line-height: 1.21429em; } /* This is needed so that empty prompt areas can collapse to zero height when there is no content in the output_subarea and the prompt. The main purpose of this is to make sure that empty JavaScript output_subareas have no height. */ div.prompt:empty { padding-top: 0; padding-bottom: 0; } div.unrecognized_cell { padding: 5px 5px 5px 0px; /* Old browsers */ display: -webkit-box; -webkit-box-orient: horizontal; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: horizontal; -moz-box-align: stretch; display: box; box-orient: horizontal; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: row; align-items: stretch; } div.unrecognized_cell .inner_cell { border-radius: 2px; padding: 5px; font-weight: bold; color: red; border: 1px solid #cfcfcf; background: #eaeaea; } div.unrecognized_cell .inner_cell a { color: inherit; text-decoration: none; } div.unrecognized_cell .inner_cell a:hover { color: inherit; text-decoration: none; } @media (max-width: 540px) { div.unrecognized_cell > div.prompt { display: none; } } div.code_cell { /* avoid page breaking on code cells when printing */ } @media print { div.code_cell { page-break-inside: avoid; } } /* any special styling for code cells that are currently running goes here */ div.input { page-break-inside: avoid; /* Old browsers */ display: -webkit-box; -webkit-box-orient: horizontal; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: horizontal; -moz-box-align: stretch; display: box; box-orient: horizontal; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: row; align-items: stretch; } @media (max-width: 540px) { div.input { /* Old browsers */ display: -webkit-box; -webkit-box-orient: vertical; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: vertical; -moz-box-align: stretch; display: box; box-orient: vertical; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: column; align-items: stretch; } } /* input_area and input_prompt must match in top border and margin for alignment */ div.input_prompt { color: #303F9F; border-top: 1px solid transparent; } div.input_area > div.highlight { margin: 0.4em; border: none; padding: 0px; background-color: transparent; } div.input_area > div.highlight > pre { margin: 0px; border: none; padding: 0px; background-color: transparent; } /* The following gets added to the if it is detected that the user has a * monospace font with inconsistent normal/bold/italic height. See * notebookmain.js. Such fonts will have keywords vertically offset with * respect to the rest of the text. The user should select a better font. * See: https://github.com/ipython/ipython/issues/1503 * * .CodeMirror span { * vertical-align: bottom; * } */ .CodeMirror { line-height: 1.21429em; /* Changed from 1em to our global default */ font-size: 14px; height: auto; /* Changed to auto to autogrow */ background: none; /* Changed from white to allow our bg to show through */ } .CodeMirror-scroll { /* The CodeMirror docs are a bit fuzzy on if overflow-y should be hidden or visible.*/ /* We have found that if it is visible, vertical scrollbars appear with font size changes.*/ overflow-y: hidden; overflow-x: auto; } .CodeMirror-lines { /* In CM2, this used to be 0.4em, but in CM3 it went to 4px. We need the em value because */ /* we have set a different line-height and want this to scale with that. */ padding: 0.4em; } .CodeMirror-linenumber { padding: 0 8px 0 4px; } .CodeMirror-gutters { border-bottom-left-radius: 2px; border-top-left-radius: 2px; } .CodeMirror pre { /* In CM3 this went to 4px from 0 in CM2. We need the 0 value because of how we size */ /* .CodeMirror-lines */ padding: 0; border: 0; border-radius: 0; } /* Original style from softwaremaniacs.org (c) Ivan Sagalaev Adapted from GitHub theme */ .highlight-base { color: #000; } .highlight-variable { color: #000; } .highlight-variable-2 { color: #1a1a1a; } .highlight-variable-3 { color: #333333; } .highlight-string { color: #BA2121; } .highlight-comment { color: #408080; font-style: italic; } .highlight-number { color: #080; } .highlight-atom { color: #88F; } .highlight-keyword { color: #008000; font-weight: bold; } .highlight-builtin { color: #008000; } .highlight-error { color: #f00; } .highlight-operator { color: #AA22FF; font-weight: bold; } .highlight-meta { color: #AA22FF; } /* previously not defined, copying from default codemirror */ .highlight-def { color: #00f; } .highlight-string-2 { color: #f50; } .highlight-qualifier { color: #555; } .highlight-bracket { color: #997; } .highlight-tag { color: #170; } .highlight-attribute { color: #00c; } .highlight-header { color: blue; } .highlight-quote { color: #090; } .highlight-link { color: #00c; } /* apply the same style to codemirror */ .cm-s-ipython span.cm-keyword { color: #008000; font-weight: bold; } .cm-s-ipython span.cm-atom { color: #88F; } .cm-s-ipython span.cm-number { color: #080; } .cm-s-ipython span.cm-def { color: #00f; } .cm-s-ipython span.cm-variable { color: #000; } .cm-s-ipython span.cm-operator { color: #AA22FF; font-weight: bold; } .cm-s-ipython span.cm-variable-2 { color: #1a1a1a; } .cm-s-ipython span.cm-variable-3 { color: #333333; } .cm-s-ipython span.cm-comment { color: #408080; font-style: italic; } .cm-s-ipython span.cm-string { color: #BA2121; } .cm-s-ipython span.cm-string-2 { color: #f50; } .cm-s-ipython span.cm-meta { color: #AA22FF; } .cm-s-ipython span.cm-qualifier { color: #555; } .cm-s-ipython span.cm-builtin { color: #008000; } .cm-s-ipython span.cm-bracket { color: #997; } .cm-s-ipython span.cm-tag { color: #170; } .cm-s-ipython span.cm-attribute { color: #00c; } .cm-s-ipython span.cm-header { color: blue; } .cm-s-ipython span.cm-quote { color: #090; } .cm-s-ipython span.cm-link { color: #00c; } .cm-s-ipython span.cm-error { color: #f00; } .cm-s-ipython span.cm-tab { background: url(); background-position: right; background-repeat: no-repeat; } div.output_wrapper { /* this position must be relative to enable descendents to be absolute within it */ position: relative; /* Old browsers */ display: -webkit-box; -webkit-box-orient: vertical; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: vertical; -moz-box-align: stretch; display: box; box-orient: vertical; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: column; align-items: stretch; z-index: 1; } /* class for the output area when it should be height-limited */ div.output_scroll { /* ideally, this would be max-height, but FF barfs all over that */ height: 24em; /* FF needs this *and the wrapper* to specify full width, or it will shrinkwrap */ width: 100%; overflow: auto; border-radius: 2px; -webkit-box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8); box-shadow: inset 0 2px 8px rgba(0, 0, 0, 0.8); display: block; } /* output div while it is collapsed */ div.output_collapsed { margin: 0px; padding: 0px; /* Old browsers */ display: -webkit-box; -webkit-box-orient: vertical; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: vertical; -moz-box-align: stretch; display: box; box-orient: vertical; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: column; align-items: stretch; } div.out_prompt_overlay { height: 100%; padding: 0px 0.4em; position: absolute; border-radius: 2px; } div.out_prompt_overlay:hover { /* use inner shadow to get border that is computed the same on WebKit/FF */ -webkit-box-shadow: inset 0 0 1px #000; box-shadow: inset 0 0 1px #000; background: rgba(240, 240, 240, 0.5); } div.output_prompt { color: #D84315; } /* This class is the outer container of all output sections. */ div.output_area { padding: 0px; page-break-inside: avoid; /* Old browsers */ display: -webkit-box; -webkit-box-orient: horizontal; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: horizontal; -moz-box-align: stretch; display: box; box-orient: horizontal; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: row; align-items: stretch; } div.output_area .MathJax_Display { text-align: left !important; } div.output_area .rendered_html table { margin-left: 0; margin-right: 0; } div.output_area .rendered_html img { margin-left: 0; margin-right: 0; } div.output_area img, div.output_area svg { max-width: 100%; height: auto; } div.output_area img.unconfined, div.output_area svg.unconfined { max-width: none; } /* This is needed to protect the pre formating from global settings such as that of bootstrap */ .output { /* Old browsers */ display: -webkit-box; -webkit-box-orient: vertical; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: vertical; -moz-box-align: stretch; display: box; box-orient: vertical; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: column; align-items: stretch; } @media (max-width: 540px) { div.output_area { /* Old browsers */ display: -webkit-box; -webkit-box-orient: vertical; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: vertical; -moz-box-align: stretch; display: box; box-orient: vertical; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: column; align-items: stretch; } } div.output_area pre { margin: 0; padding: 0; border: 0; vertical-align: baseline; color: black; background-color: transparent; border-radius: 0; } /* This class is for the output subarea inside the output_area and after the prompt div. */ div.output_subarea { overflow-x: auto; padding: 0.4em; /* Old browsers */ -webkit-box-flex: 1; -moz-box-flex: 1; box-flex: 1; /* Modern browsers */ flex: 1; max-width: calc(100% - 14ex); } div.output_scroll div.output_subarea { overflow-x: visible; } /* The rest of the output_* classes are for special styling of the different output types */ /* all text output has this class: */ div.output_text { text-align: left; color: #000; /* This has to match that of the the CodeMirror class line-height below */ line-height: 1.21429em; } /* stdout/stderr are 'text' as well as 'stream', but execute_result/error are *not* streams */ div.output_stderr { background: #fdd; /* very light red background for stderr */ } div.output_latex { text-align: left; } /* Empty output_javascript divs should have no height */ div.output_javascript:empty { padding: 0; } .js-error { color: darkred; } /* raw_input styles */ div.raw_input_container { line-height: 1.21429em; padding-top: 5px; } pre.raw_input_prompt { /* nothing needed here. */ } input.raw_input { font-family: monospace; font-size: inherit; color: inherit; width: auto; /* make sure input baseline aligns with prompt */ vertical-align: baseline; /* padding + margin = 0.5em between prompt and cursor */ padding: 0em 0.25em; margin: 0em 0.25em; } input.raw_input:focus { box-shadow: none; } p.p-space { margin-bottom: 10px; } div.output_unrecognized { padding: 5px; font-weight: bold; color: red; } div.output_unrecognized a { color: inherit; text-decoration: none; } div.output_unrecognized a:hover { color: inherit; text-decoration: none; } .rendered_html { color: #000; /* any extras will just be numbers: */ } .rendered_html em { font-style: italic; } .rendered_html strong { font-weight: bold; } .rendered_html u { text-decoration: underline; } .rendered_html :link { text-decoration: underline; } .rendered_html :visited { text-decoration: underline; } .rendered_html h1 { font-size: 185.7%; margin: 1.08em 0 0 0; font-weight: bold; line-height: 1.0; } .rendered_html h2 { font-size: 80.1%; margin: 1.27em 0 0 0; font-weight: bold; line-height: 1.0; } .rendered_html h3 { font-size: 128.6%; margin: 1.55em 0 0 0; font-weight: bold; line-height: 1.0; } .rendered_html h4 { font-size: 100%; margin: 2em 0 0 0; font-weight: bold; line-height: 1.0; } .rendered_html h5 { font-size: 100%; margin: 2em 0 0 0; font-weight: bold; line-height: 1.0; font-style: italic; } .rendered_html h6 { font-size: 100%; margin: 2em 0 0 0; font-weight: bold; line-height: 1.0; font-style: italic; } .rendered_html h1:first-child { margin-top: 0.538em; } .rendered_html h2:first-child { margin-top: 0.636em; } .rendered_html h3:first-child { margin-top: 0.777em; } .rendered_html h4:first-child { margin-top: 1em; } .rendered_html h5:first-child { margin-top: 1em; } .rendered_html h6:first-child { margin-top: 1em; } .rendered_html ul { list-style: disc; margin: 0em 2em; padding-left: 0px; } .rendered_html ul ul { list-style: square; margin: 0em 2em; } .rendered_html ul ul ul { list-style: circle; margin: 0em 2em; } .rendered_html ol { list-style: decimal; margin: 0em 2em; padding-left: 0px; } .rendered_html ol ol { list-style: upper-alpha; margin: 0em 2em; } .rendered_html ol ol ol { list-style: lower-alpha; margin: 0em 2em; } .rendered_html ol ol ol ol { list-style: lower-roman; margin: 0em 2em; } .rendered_html ol ol ol ol ol { list-style: decimal; margin: 0em 2em; } .rendered_html * + ul { margin-top: 1em; } .rendered_html * + ol { margin-top: 1em; } .rendered_html hr { color: black; background-color: black; } .rendered_html pre { margin: 1em 2em; } .rendered_html pre, .rendered_html code { border: 0; background-color: #fff; color: #000; font-size: 100%; padding: 0px; } .rendered_html blockquote { margin: 1em 2em; } .rendered_html table { margin-left: auto; margin-right: auto; border: 1px solid black; border-collapse: collapse; } .rendered_html tr, .rendered_html th, .rendered_html td { border: 1px solid black; border-collapse: collapse; margin: 1em 2em; } .rendered_html td, .rendered_html th { text-align: left; vertical-align: middle; padding: 4px; } .rendered_html th { font-weight: bold; } .rendered_html * + table { margin-top: 1em; } .rendered_html p { text-align: left; } .rendered_html * + p { margin-top: 1em; } .rendered_html img { display: block; margin-left: auto; margin-right: auto; } .rendered_html * + img { margin-top: 1em; } .rendered_html img, .rendered_html svg { max-width: 100%; height: auto; } .rendered_html img.unconfined, .rendered_html svg.unconfined { max-width: none; } div.text_cell { /* Old browsers */ display: -webkit-box; -webkit-box-orient: horizontal; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: horizontal; -moz-box-align: stretch; display: box; box-orient: horizontal; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: row; align-items: stretch; } @media (max-width: 540px) { div.text_cell > div.prompt { display: none; } } div.text_cell_render { /*font-family: "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;*/ outline: none; resize: none; width: inherit; border-style: none; padding: 0.5em 0.5em 0.5em 0.4em; color: #000; box-sizing: border-box; -moz-box-sizing: border-box; -webkit-box-sizing: border-box; } a.anchor-link:link { text-decoration: none; padding: 0px 20px; visibility: hidden; } h1:hover .anchor-link, h2:hover .anchor-link, h3:hover .anchor-link, h4:hover .anchor-link, h5:hover .anchor-link, h6:hover .anchor-link { visibility: visible; } .text_cell.rendered .input_area { display: none; } .text_cell.rendered .rendered_html { overflow-x: auto; overflow-y: hidden; } .text_cell.unrendered .text_cell_render { display: none; } .cm-header-1, .cm-header-2, .cm-header-3, .cm-header-4, .cm-header-5, .cm-header-6 { font-weight: bold; font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; } .cm-header-1 { font-size: 185.7%; } .cm-header-2 { font-size: 157.1%; } .cm-header-3 { font-size: 128.6%; } .cm-header-4 { font-size: 110%; } .cm-header-5 { font-size: 100%; font-style: italic; } .cm-header-6 { font-size: 100%; font-style: italic; } /*! * * IPython notebook webapp * */ @media (max-width: 767px) { .notebook_app { padding-left: 0px; padding-right: 0px; } } #ipython-main-app { box-sizing: border-box; -moz-box-sizing: border-box; -webkit-box-sizing: border-box; height: 100%; } div#notebook_panel { margin: 0px; padding: 0px; box-sizing: border-box; -moz-box-sizing: border-box; -webkit-box-sizing: border-box; height: 100%; } div#notebook { font-size: 14px; line-height: 20px; overflow-y: hidden; overflow-x: auto; width: 100%; /* This spaces the page away from the edge of the notebook area */ padding-top: 20px; margin: 0px; outline: none; box-sizing: border-box; -moz-box-sizing: border-box; -webkit-box-sizing: border-box; min-height: 100%; } @media not print { #notebook-container { padding: 15px; background-color: #fff; min-height: 0; -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); } } @media print { #notebook-container { width: 100%; } } div.ui-widget-content { border: 1px solid #ababab; outline: none; } pre.dialog { background-color: #f7f7f7; border: 1px solid #ddd; border-radius: 2px; padding: 0.4em; padding-left: 2em; } p.dialog { padding: 0.2em; } /* Word-wrap output correctly. This is the CSS3 spelling, though Firefox seems to not honor it correctly. Webkit browsers (Chrome, rekonq, Safari) do. */ pre, code, kbd, samp { white-space: pre-wrap; } #fonttest { font-family: monospace; } p { margin-bottom: 0; } .end_space { min-height: 100px; transition: height .2s ease; } .notebook_app > #header { -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); } @media not print { .notebook_app { background-color: #EEE; } } kbd { border-style: solid; border-width: 1px; box-shadow: none; margin: 2px; padding-left: 2px; padding-right: 2px; padding-top: 1px; padding-bottom: 1px; } /* CSS for the cell toolbar */ .celltoolbar { border: thin solid #CFCFCF; border-bottom: none; background: #EEE; border-radius: 2px 2px 0px 0px; width: 100%; height: 29px; padding-right: 4px; /* Old browsers */ display: -webkit-box; -webkit-box-orient: horizontal; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: horizontal; -moz-box-align: stretch; display: box; box-orient: horizontal; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: row; align-items: stretch; /* Old browsers */ -webkit-box-pack: end; -moz-box-pack: end; box-pack: end; /* Modern browsers */ justify-content: flex-end; display: -webkit-flex; } @media print { .celltoolbar { display: none; } } .ctb_hideshow { display: none; vertical-align: bottom; } /* ctb_show is added to the ctb_hideshow div to show the cell toolbar. Cell toolbars are only shown when the ctb_global_show class is also set. */ .ctb_global_show .ctb_show.ctb_hideshow { display: block; } .ctb_global_show .ctb_show + .input_area, .ctb_global_show .ctb_show + div.text_cell_input, .ctb_global_show .ctb_show ~ div.text_cell_render { border-top-right-radius: 0px; border-top-left-radius: 0px; } .ctb_global_show .ctb_show ~ div.text_cell_render { border: 1px solid #cfcfcf; } .celltoolbar { font-size: 87%; padding-top: 3px; } .celltoolbar select { display: block; width: 100%; height: 32px; padding: 6px 12px; font-size: 13px; line-height: 1.42857143; color: #555555; background-color: #fff; background-image: none; border: 1px solid #ccc; border-radius: 2px; -webkit-box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.075); -webkit-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s; -o-transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s; transition: border-color ease-in-out .15s, box-shadow ease-in-out .15s; height: 30px; padding: 5px 10px; font-size: 12px; line-height: 1.5; border-radius: 1px; width: inherit; font-size: inherit; height: 22px; padding: 0px; display: inline-block; } .celltoolbar select:focus { border-color: #66afe9; outline: 0; -webkit-box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6); box-shadow: inset 0 1px 1px rgba(0,0,0,.075), 0 0 8px rgba(102, 175, 233, 0.6); } .celltoolbar select::-moz-placeholder { color: #999; opacity: 1; } .celltoolbar select:-ms-input-placeholder { color: #999; } .celltoolbar select::-webkit-input-placeholder { color: #999; } .celltoolbar select::-ms-expand { border: 0; background-color: transparent; } .celltoolbar select[disabled], .celltoolbar select[readonly], fieldset[disabled] .celltoolbar select { background-color: #eeeeee; opacity: 1; } .celltoolbar select[disabled], fieldset[disabled] .celltoolbar select { cursor: not-allowed; } textarea.celltoolbar select { height: auto; } select.celltoolbar select { height: 30px; line-height: 30px; } textarea.celltoolbar select, select[multiple].celltoolbar select { height: auto; } .celltoolbar label { margin-left: 5px; margin-right: 5px; } .completions { position: absolute; z-index: 110; overflow: hidden; border: 1px solid #ababab; border-radius: 2px; -webkit-box-shadow: 0px 6px 10px -1px #adadad; box-shadow: 0px 6px 10px -1px #adadad; line-height: 1; } .completions select { background: white; outline: none; border: none; padding: 0px; margin: 0px; overflow: auto; font-family: monospace; font-size: 110%; color: #000; width: auto; } .completions select option.context { color: #286090; } #kernel_logo_widget { float: right !important; float: right; } #kernel_logo_widget .current_kernel_logo { display: none; margin-top: -1px; margin-bottom: -1px; width: 32px; height: 32px; } #menubar { box-sizing: border-box; -moz-box-sizing: border-box; -webkit-box-sizing: border-box; margin-top: 1px; } #menubar .navbar { border-top: 1px; border-radius: 0px 0px 2px 2px; margin-bottom: 0px; } #menubar .navbar-toggle { float: left; padding-top: 7px; padding-bottom: 7px; border: none; } #menubar .navbar-collapse { clear: left; } .nav-wrapper { border-bottom: 1px solid #e7e7e7; } i.menu-icon { padding-top: 4px; } ul#help_menu li a { overflow: hidden; padding-right: 2.2em; } ul#help_menu li a i { margin-right: -1.2em; } .dropdown-submenu { position: relative; } .dropdown-submenu > .dropdown-menu { top: 0; left: 100%; margin-top: -6px; margin-left: -1px; } .dropdown-submenu:hover > .dropdown-menu { display: block; } .dropdown-submenu > a:after { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; display: block; content: "\f0da"; float: right; color: #333333; margin-top: 2px; margin-right: -10px; } .dropdown-submenu > a:after.pull-left { margin-right: .3em; } .dropdown-submenu > a:after.pull-right { margin-left: .3em; } .dropdown-submenu:hover > a:after { color: #262626; } .dropdown-submenu.pull-left { float: none; } .dropdown-submenu.pull-left > .dropdown-menu { left: -100%; margin-left: 10px; } #notification_area { float: right !important; float: right; z-index: 10; } .indicator_area { float: right !important; float: right; color: #777; margin-left: 5px; margin-right: 5px; width: 11px; z-index: 10; text-align: center; width: auto; } #kernel_indicator { float: right !important; float: right; color: #777; margin-left: 5px; margin-right: 5px; width: 11px; z-index: 10; text-align: center; width: auto; border-left: 1px solid; } #kernel_indicator .kernel_indicator_name { padding-left: 5px; padding-right: 5px; } #modal_indicator { float: right !important; float: right; color: #777; margin-left: 5px; margin-right: 5px; width: 11px; z-index: 10; text-align: center; width: auto; } #readonly-indicator { float: right !important; float: right; color: #777; margin-left: 5px; margin-right: 5px; width: 11px; z-index: 10; text-align: center; width: auto; margin-top: 2px; margin-bottom: 0px; margin-left: 0px; margin-right: 0px; display: none; } .modal_indicator:before { width: 1.28571429em; text-align: center; } .edit_mode .modal_indicator:before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; content: "\f040"; } .edit_mode .modal_indicator:before.pull-left { margin-right: .3em; } .edit_mode .modal_indicator:before.pull-right { margin-left: .3em; } .command_mode .modal_indicator:before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; content: ' '; } .command_mode .modal_indicator:before.pull-left { margin-right: .3em; } .command_mode .modal_indicator:before.pull-right { margin-left: .3em; } .kernel_idle_icon:before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; content: "\f10c"; } .kernel_idle_icon:before.pull-left { margin-right: .3em; } .kernel_idle_icon:before.pull-right { margin-left: .3em; } .kernel_busy_icon:before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; content: "\f111"; } .kernel_busy_icon:before.pull-left { margin-right: .3em; } .kernel_busy_icon:before.pull-right { margin-left: .3em; } .kernel_dead_icon:before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; content: "\f1e2"; } .kernel_dead_icon:before.pull-left { margin-right: .3em; } .kernel_dead_icon:before.pull-right { margin-left: .3em; } .kernel_disconnected_icon:before { display: inline-block; font: normal normal normal 14px/1 FontAwesome; font-size: inherit; text-rendering: auto; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; content: "\f127"; } .kernel_disconnected_icon:before.pull-left { margin-right: .3em; } .kernel_disconnected_icon:before.pull-right { margin-left: .3em; } .notification_widget { color: #777; z-index: 10; background: rgba(240, 240, 240, 0.5); margin-right: 4px; color: #333; background-color: #fff; border-color: #ccc; } .notification_widget:focus, .notification_widget.focus { color: #333; background-color: #e6e6e6; border-color: #8c8c8c; } .notification_widget:hover { color: #333; background-color: #e6e6e6; border-color: #adadad; } .notification_widget:active, .notification_widget.active, .open > .dropdown-toggle.notification_widget { color: #333; background-color: #e6e6e6; border-color: #adadad; } .notification_widget:active:hover, .notification_widget.active:hover, .open > .dropdown-toggle.notification_widget:hover, .notification_widget:active:focus, .notification_widget.active:focus, .open > .dropdown-toggle.notification_widget:focus, .notification_widget:active.focus, .notification_widget.active.focus, .open > .dropdown-toggle.notification_widget.focus { color: #333; background-color: #d4d4d4; border-color: #8c8c8c; } .notification_widget:active, .notification_widget.active, .open > .dropdown-toggle.notification_widget { background-image: none; } .notification_widget.disabled:hover, .notification_widget[disabled]:hover, fieldset[disabled] .notification_widget:hover, .notification_widget.disabled:focus, .notification_widget[disabled]:focus, fieldset[disabled] .notification_widget:focus, .notification_widget.disabled.focus, .notification_widget[disabled].focus, fieldset[disabled] .notification_widget.focus { background-color: #fff; border-color: #ccc; } .notification_widget .badge { color: #fff; background-color: #333; } .notification_widget.warning { color: #fff; background-color: #f0ad4e; border-color: #eea236; } .notification_widget.warning:focus, .notification_widget.warning.focus { color: #fff; background-color: #ec971f; border-color: #985f0d; } .notification_widget.warning:hover { color: #fff; background-color: #ec971f; border-color: #d58512; } .notification_widget.warning:active, .notification_widget.warning.active, .open > .dropdown-toggle.notification_widget.warning { color: #fff; background-color: #ec971f; border-color: #d58512; } .notification_widget.warning:active:hover, .notification_widget.warning.active:hover, .open > .dropdown-toggle.notification_widget.warning:hover, .notification_widget.warning:active:focus, .notification_widget.warning.active:focus, .open > .dropdown-toggle.notification_widget.warning:focus, .notification_widget.warning:active.focus, .notification_widget.warning.active.focus, .open > .dropdown-toggle.notification_widget.warning.focus { color: #fff; background-color: #d58512; border-color: #985f0d; } .notification_widget.warning:active, .notification_widget.warning.active, .open > .dropdown-toggle.notification_widget.warning { background-image: none; } .notification_widget.warning.disabled:hover, .notification_widget.warning[disabled]:hover, fieldset[disabled] .notification_widget.warning:hover, .notification_widget.warning.disabled:focus, .notification_widget.warning[disabled]:focus, fieldset[disabled] .notification_widget.warning:focus, .notification_widget.warning.disabled.focus, .notification_widget.warning[disabled].focus, fieldset[disabled] .notification_widget.warning.focus { background-color: #f0ad4e; border-color: #eea236; } .notification_widget.warning .badge { color: #f0ad4e; background-color: #fff; } .notification_widget.success { color: #fff; background-color: #5cb85c; border-color: #4cae4c; } .notification_widget.success:focus, .notification_widget.success.focus { color: #fff; background-color: #449d44; border-color: #255625; } .notification_widget.success:hover { color: #fff; background-color: #449d44; border-color: #398439; } .notification_widget.success:active, .notification_widget.success.active, .open > .dropdown-toggle.notification_widget.success { color: #fff; background-color: #449d44; border-color: #398439; } .notification_widget.success:active:hover, .notification_widget.success.active:hover, .open > .dropdown-toggle.notification_widget.success:hover, .notification_widget.success:active:focus, .notification_widget.success.active:focus, .open > .dropdown-toggle.notification_widget.success:focus, .notification_widget.success:active.focus, .notification_widget.success.active.focus, .open > .dropdown-toggle.notification_widget.success.focus { color: #fff; background-color: #398439; border-color: #255625; } .notification_widget.success:active, .notification_widget.success.active, .open > .dropdown-toggle.notification_widget.success { background-image: none; } .notification_widget.success.disabled:hover, .notification_widget.success[disabled]:hover, fieldset[disabled] .notification_widget.success:hover, .notification_widget.success.disabled:focus, .notification_widget.success[disabled]:focus, fieldset[disabled] .notification_widget.success:focus, .notification_widget.success.disabled.focus, .notification_widget.success[disabled].focus, fieldset[disabled] .notification_widget.success.focus { background-color: #5cb85c; border-color: #4cae4c; } .notification_widget.success .badge { color: #5cb85c; background-color: #fff; } .notification_widget.info { color: #fff; background-color: #5bc0de; border-color: #46b8da; } .notification_widget.info:focus, .notification_widget.info.focus { color: #fff; background-color: #31b0d5; border-color: #1b6d85; } .notification_widget.info:hover { color: #fff; background-color: #31b0d5; border-color: #269abc; } .notification_widget.info:active, .notification_widget.info.active, .open > .dropdown-toggle.notification_widget.info { color: #fff; background-color: #31b0d5; border-color: #269abc; } .notification_widget.info:active:hover, .notification_widget.info.active:hover, .open > .dropdown-toggle.notification_widget.info:hover, .notification_widget.info:active:focus, .notification_widget.info.active:focus, .open > .dropdown-toggle.notification_widget.info:focus, .notification_widget.info:active.focus, .notification_widget.info.active.focus, .open > .dropdown-toggle.notification_widget.info.focus { color: #fff; background-color: #269abc; border-color: #1b6d85; } .notification_widget.info:active, .notification_widget.info.active, .open > .dropdown-toggle.notification_widget.info { background-image: none; } .notification_widget.info.disabled:hover, .notification_widget.info[disabled]:hover, fieldset[disabled] .notification_widget.info:hover, .notification_widget.info.disabled:focus, .notification_widget.info[disabled]:focus, fieldset[disabled] .notification_widget.info:focus, .notification_widget.info.disabled.focus, .notification_widget.info[disabled].focus, fieldset[disabled] .notification_widget.info.focus { background-color: #5bc0de; border-color: #46b8da; } .notification_widget.info .badge { color: #5bc0de; background-color: #fff; } .notification_widget.danger { color: #fff; background-color: #d9534f; border-color: #d43f3a; } .notification_widget.danger:focus, .notification_widget.danger.focus { color: #fff; background-color: #c9302c; border-color: #761c19; } .notification_widget.danger:hover { color: #fff; background-color: #c9302c; border-color: #ac2925; } .notification_widget.danger:active, .notification_widget.danger.active, .open > .dropdown-toggle.notification_widget.danger { color: #fff; background-color: #c9302c; border-color: #ac2925; } .notification_widget.danger:active:hover, .notification_widget.danger.active:hover, .open > .dropdown-toggle.notification_widget.danger:hover, .notification_widget.danger:active:focus, .notification_widget.danger.active:focus, .open > .dropdown-toggle.notification_widget.danger:focus, .notification_widget.danger:active.focus, .notification_widget.danger.active.focus, .open > .dropdown-toggle.notification_widget.danger.focus { color: #fff; background-color: #ac2925; border-color: #761c19; } .notification_widget.danger:active, .notification_widget.danger.active, .open > .dropdown-toggle.notification_widget.danger { background-image: none; } .notification_widget.danger.disabled:hover, .notification_widget.danger[disabled]:hover, fieldset[disabled] .notification_widget.danger:hover, .notification_widget.danger.disabled:focus, .notification_widget.danger[disabled]:focus, fieldset[disabled] .notification_widget.danger:focus, .notification_widget.danger.disabled.focus, .notification_widget.danger[disabled].focus, fieldset[disabled] .notification_widget.danger.focus { background-color: #d9534f; border-color: #d43f3a; } .notification_widget.danger .badge { color: #d9534f; background-color: #fff; } div#pager { background-color: #fff; font-size: 14px; line-height: 20px; overflow: hidden; display: none; position: fixed; bottom: 0px; width: 100%; max-height: 50%; padding-top: 8px; -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); /* Display over codemirror */ z-index: 100; /* Hack which prevents jquery ui resizable from changing top. */ top: auto !important; } div#pager pre { line-height: 1.21429em; color: #000; background-color: #f7f7f7; padding: 0.4em; } div#pager #pager-button-area { position: absolute; top: 8px; right: 20px; } div#pager #pager-contents { position: relative; overflow: auto; width: 100%; height: 100%; } div#pager #pager-contents #pager-container { position: relative; padding: 15px 0px; box-sizing: border-box; -moz-box-sizing: border-box; -webkit-box-sizing: border-box; } div#pager .ui-resizable-handle { top: 0px; height: 8px; background: #f7f7f7; border-top: 1px solid #cfcfcf; border-bottom: 1px solid #cfcfcf; /* This injects handle bars (a short, wide = symbol) for the resize handle. */ } div#pager .ui-resizable-handle::after { content: ''; top: 2px; left: 50%; height: 3px; width: 30px; margin-left: -15px; position: absolute; border-top: 1px solid #cfcfcf; } .quickhelp { /* Old browsers */ display: -webkit-box; -webkit-box-orient: horizontal; -webkit-box-align: stretch; display: -moz-box; -moz-box-orient: horizontal; -moz-box-align: stretch; display: box; box-orient: horizontal; box-align: stretch; /* Modern browsers */ display: flex; flex-direction: row; align-items: stretch; line-height: 1.8em; } .shortcut_key { display: inline-block; width: 21ex; text-align: right; font-family: monospace; } .shortcut_descr { display: inline-block; /* Old browsers */ -webkit-box-flex: 1; -moz-box-flex: 1; box-flex: 1; /* Modern browsers */ flex: 1; } span.save_widget { margin-top: 6px; } span.save_widget span.filename { height: 1em; line-height: 1em; padding: 3px; margin-left: 16px; border: none; font-size: 146.5%; border-radius: 2px; } span.save_widget span.filename:hover { background-color: #e6e6e6; } span.checkpoint_status, span.autosave_status { font-size: small; } @media (max-width: 767px) { span.save_widget { font-size: small; } span.checkpoint_status, span.autosave_status { display: none; } } @media (min-width: 600px and (max-width: 991px) { span.checkpoint_status { display: none; } span.autosave_status { font-size: x-small; } } .toolbar { padding: 0px; margin-left: -5px; margin-top: 2px; margin-bottom: 5px; box-sizing: border-box; -moz-box-sizing: border-box; -webkit-box-sizing: border-box; } .toolbar select, .toolbar label { width: auto; vertical-align: middle; margin-right: 2px; margin-bottom: 0px; display: inline; font-size: 92%; margin-left: 0.3em; margin-right: 0.3em; padding: 0px; padding-top: 3px; } .toolbar .btn { padding: 2px 8px; } .toolbar .btn-group { margin-top: 0px; margin-left: 5px; } #maintoolbar { margin-bottom: -3px; margin-top: -8px; border: 0px; min-height: 27px; margin-left: 0px; padding-top: 11px; padding-bottom: 3px; } #maintoolbar .navbar-text { float: none; vertical-align: middle; text-align: right; margin-left: 5px; margin-right: 0px; margin-top: 0px; } .select-xs { height: 24px; } .pulse, .dropdown-menu > li > a.pulse, li.pulse > a.dropdown-toggle, li.pulse.open > a.dropdown-toggle { background-color: #F37626; color: white; } /** * Primary styles * * Author: Jupyter Development Team */ /** WARNING IF YOU ARE EDITTING THIS FILE, if this is a .css file, It has a lot * of chance of beeing generated from the ../less/[samename].less file, you can * try to get back the less file by reverting somme commit in history **/ /* * We'll try to get something pretty, so we * have some strange css to have the scroll bar on * the left with fix button on the top right of the tooltip */ @-moz-keyframes fadeOut { from { opacity: 1; } to { opacity: 0; } } @-webkit-keyframes fadeOut { from { opacity: 1; } to { opacity: 0; } } @-moz-keyframes fadeIn { from { opacity: 0; } to { opacity: 1; } } @-webkit-keyframes fadeIn { from { opacity: 0; } to { opacity: 1; } } /*properties of tooltip after "expand"*/ .bigtooltip { overflow: auto; height: 200px; -webkit-transition-property: height; -webkit-transition-duration: 500ms; -moz-transition-property: height; -moz-transition-duration: 500ms; transition-property: height; transition-duration: 500ms; } /*properties of tooltip before "expand"*/ .smalltooltip { -webkit-transition-property: height; -webkit-transition-duration: 500ms; -moz-transition-property: height; -moz-transition-duration: 500ms; transition-property: height; transition-duration: 500ms; text-overflow: ellipsis; overflow: hidden; height: 80px; } .tooltipbuttons { position: absolute; padding-right: 15px; top: 0px; right: 0px; } .tooltiptext { /*avoid the button to overlap on some docstring*/ padding-right: 30px; } .ipython_tooltip { max-width: 700px; /*fade-in animation when inserted*/ -webkit-animation: fadeOut 400ms; -moz-animation: fadeOut 400ms; animation: fadeOut 400ms; -webkit-animation: fadeIn 400ms; -moz-animation: fadeIn 400ms; animation: fadeIn 400ms; vertical-align: middle; background-color: #f7f7f7; overflow: visible; border: #ababab 1px solid; outline: none; padding: 3px; margin: 0px; padding-left: 7px; font-family: monospace; min-height: 50px; -moz-box-shadow: 0px 6px 10px -1px #adadad; -webkit-box-shadow: 0px 6px 10px -1px #adadad; box-shadow: 0px 6px 10px -1px #adadad; border-radius: 2px; position: absolute; z-index: 1000; } .ipython_tooltip a { float: right; } .ipython_tooltip .tooltiptext pre { border: 0; border-radius: 0; font-size: 100%; background-color: #f7f7f7; } .pretooltiparrow { left: 0px; margin: 0px; top: -16px; width: 40px; height: 16px; overflow: hidden; position: absolute; } .pretooltiparrow:before { background-color: #f7f7f7; border: 1px #ababab solid; z-index: 11; content: ""; position: absolute; left: 15px; top: 10px; width: 25px; height: 25px; -webkit-transform: rotate(45deg); -moz-transform: rotate(45deg); -ms-transform: rotate(45deg); -o-transform: rotate(45deg); } ul.typeahead-list i { margin-left: -10px; width: 18px; } ul.typeahead-list { max-height: 80vh; overflow: auto; } ul.typeahead-list > li > a { /** Firefox bug **/ /* see https://github.com/jupyter/notebook/issues/559 */ white-space: normal; } .cmd-palette .modal-body { padding: 7px; } .cmd-palette form { background: white; } .cmd-palette input { outline: none; } .no-shortcut { display: none; } .command-shortcut:before { content: "(command)"; padding-right: 3px; color: #777777; } .edit-shortcut:before { content: "(edit)"; padding-right: 3px; color: #777777; } #find-and-replace #replace-preview .match, #find-and-replace #replace-preview .insert { background-color: #BBDEFB; border-color: #90CAF9; border-style: solid; border-width: 1px; border-radius: 0px; } #find-and-replace #replace-preview .replace .match { background-color: #FFCDD2; border-color: #EF9A9A; border-radius: 0px; } #find-and-replace #replace-preview .replace .insert { background-color: #C8E6C9; border-color: #A5D6A7; border-radius: 0px; } #find-and-replace #replace-preview { max-height: 60vh; overflow: auto; } #find-and-replace #replace-preview pre { padding: 5px 10px; } .terminal-app { background: #EEE; } .terminal-app #header { background: #fff; -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.2); } .terminal-app .terminal { width: 100%; float: left; font-family: monospace; color: white; background: black; padding: 0.4em; border-radius: 2px; -webkit-box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.4); box-shadow: 0px 0px 12px 1px rgba(87, 87, 87, 0.4); } .terminal-app .terminal, .terminal-app .terminal dummy-screen { line-height: 1em; font-size: 14px; } .terminal-app .terminal .xterm-rows { padding: 10px; } .terminal-app .terminal-cursor { color: black; background: white; } .terminal-app #terminado-container { margin-top: 20px; } /*# sourceMappingURL=style.min.css.map */ .highlight .hll { background-color: #ffffcc } .highlight { background: #f8f8f8; } .highlight .c { color: #408080; font-style: italic } /* Comment */ .highlight .err { border: 1px solid #FF0000 } /* Error */ .highlight .k { color: #008000; font-weight: bold } /* Keyword */ .highlight .o { color: #666666 } /* Operator */ .highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */ .highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */ .highlight .cp { color: #BC7A00 } /* Comment.Preproc */ .highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */ .highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */ .highlight .cs { color: #408080; font-style: italic } /* Comment.Special */ .highlight .gd { color: #A00000 } /* Generic.Deleted */ .highlight .ge { font-style: italic } /* Generic.Emph */ .highlight .gr { color: #FF0000 } /* Generic.Error */ .highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ .highlight .gi { color: #00A000 } /* Generic.Inserted */ .highlight .go { color: #888888 } /* Generic.Output */ .highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ .highlight .gs { font-weight: bold } /* Generic.Strong */ .highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ .highlight .gt { color: #0044DD } /* Generic.Traceback */ .highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ .highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ .highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ .highlight .kp { color: #008000 } /* Keyword.Pseudo */ .highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ .highlight .kt { color: #B00040 } /* Keyword.Type */ .highlight .m { color: #666666 } /* Literal.Number */ .highlight .s { color: #BA2121 } /* Literal.String */ .highlight .na { color: #7D9029 } /* Name.Attribute */ .highlight .nb { color: #008000 } /* Name.Builtin */ .highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ .highlight .no { color: #880000 } /* Name.Constant */ .highlight .nd { color: #AA22FF } /* Name.Decorator */ .highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */ .highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */ .highlight .nf { color: #0000FF } /* Name.Function */ .highlight .nl { color: #A0A000 } /* Name.Label */ .highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ .highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ .highlight .nv { color: #19177C } /* Name.Variable */ .highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ .highlight .w { color: #bbbbbb } /* Text.Whitespace */ .highlight .mb { color: #666666 } /* Literal.Number.Bin */ .highlight .mf { color: #666666 } /* Literal.Number.Float */ .highlight .mh { color: #666666 } /* Literal.Number.Hex */ .highlight .mi { color: #666666 } /* Literal.Number.Integer */ .highlight .mo { color: #666666 } /* Literal.Number.Oct */ .highlight .sa { color: #BA2121 } /* Literal.String.Affix */ .highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ .highlight .sc { color: #BA2121 } /* Literal.String.Char */ .highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */ .highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ .highlight .s2 { color: #BA2121 } /* Literal.String.Double */ .highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */ .highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ .highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */ .highlight .sx { color: #008000 } /* Literal.String.Other */ .highlight .sr { color: #BB6688 } /* Literal.String.Regex */ .highlight .s1 { color: #BA2121 } /* Literal.String.Single */ .highlight .ss { color: #19177C } /* Literal.String.Symbol */ .highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0000FF } /* Name.Function.Magic */ .highlight .vc { color: #19177C } /* Name.Variable.Class */ .highlight .vg { color: #19177C } /* Name.Variable.Global */ .highlight .vi { color: #19177C } /* Name.Variable.Instance */ .highlight .vm { color: #19177C } /* Name.Variable.Magic */ .highlight .il { color: #666666 } /* Literal.Number.Integer.Long */ /* Temporary definitions which will become obsolete with Notebook release 5.0 */ .ansi-black-fg { color: #3E424D; } .ansi-black-bg { background-color: #3E424D; } .ansi-black-intense-fg { color: #282C36; } .ansi-black-intense-bg { background-color: #282C36; } .ansi-red-fg { color: #E75C58; } .ansi-red-bg { background-color: #E75C58; } .ansi-red-intense-fg { color: #B22B31; } .ansi-red-intense-bg { background-color: #B22B31; } .ansi-green-fg { color: #00A250; } .ansi-green-bg { background-color: #00A250; } .ansi-green-intense-fg { color: #007427; } .ansi-green-intense-bg { background-color: #007427; } .ansi-yellow-fg { color: #DDB62B; } .ansi-yellow-bg { background-color: #DDB62B; } .ansi-yellow-intense-fg { color: #B27D12; } .ansi-yellow-intense-bg { background-color: #B27D12; } .ansi-blue-fg { color: #208FFB; } .ansi-blue-bg { background-color: #208FFB; } .ansi-blue-intense-fg { color: #0065CA; } .ansi-blue-intense-bg { background-color: #0065CA; } .ansi-magenta-fg { color: #D160C4; } .ansi-magenta-bg { background-color: #D160C4; } .ansi-magenta-intense-fg { color: #A03196; } .ansi-magenta-intense-bg { background-color: #A03196; } .ansi-cyan-fg { color: #60C6C8; } .ansi-cyan-bg { background-color: #60C6C8; } .ansi-cyan-intense-fg { color: #258F8F; } .ansi-cyan-intense-bg { background-color: #258F8F; } .ansi-white-fg { color: #C5C1B4; } .ansi-white-bg { background-color: #C5C1B4; } .ansi-white-intense-fg { color: #A1A6B2; } .ansi-white-intense-bg { background-color: #A1A6B2; } .ansi-bold { font-weight: bold; } /* Overrides of notebook CSS for static HTML export */ body { overflow: visible; padding: 8px; } div#notebook { overflow: visible; border-top: none; } @media print { div.cell { display: block; page-break-inside: avoid; } div.output_wrapper { display: block; page-break-inside: avoid; } div.output { display: block; page-break-inside: avoid; } }

    MathJax.Hub.Config({ tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, processEnvironments: true }, // Center justify equations in code and markdown cells. Elsewhere // we use CSS to left justify single line equations in code cells. displayAlign: 'center', "HTML-CSS": { styles: {'.MathJax_Display': {"margin": 0}}, linebreaks: { automatic: true } } });

    Rstudio OverView we have 4 panes
    1) script pan – to write and save the programing script
    2) Console pane – where all the code will get executed
    3) Environment/history pane – displays all the variables created,functions
    used with in the current session
    4) Helper pane – contains multiple tabs to install/display pacakges,
    view visualization plots,
    locate files within the workspace

    In [1]: help(mean)
    getting and setting workspace In [2]: # to display current working directory use getwd() function
    getwd()
    ‘C:/Users/Suresh/mlclassscripts’

    In [ ]: # to set up workspace or working directory use setwd() function
    #syntax is shown below
    setwd("path")
    In [6]: setwd("C:\\Suresh\\R&D\\Projects\\ML classroom training\\sessions")
    setwd("C:/Suresh/R&D/Projects/ML classroom training/sessions")
    getting help in R

    To get help within R environment, we use help() function to get the
    documentation
    for any of the functions/packages available within R environment.
    To see the arguments required for a function, we use args() function.
    to see the example of a function, example() function is used.

    In [ ]: help("stats")
    help("mean")
    args("mean")
    example("mean")

    #getting help documentation for a package
    help(package="caret")
    online help for R programming

    We can get online help on available packages in R from official website of R-Cran
    https://cran.r-project.org/web/views/

    We can also get online support for our day to day activities from below websites:
    https://stackoverflow.com/
    https://stats.stackexchange.com

    Installing Packages In [ ]: #install pacakges in R can be done in two ways,
    #1) using install.packages() function and from the bottom right pane of Rstudio
    install.packages("randomForest")

    #loading of installed or downloaded packages can be done using library() function.
    #Note that we can only load the package if
    # we have installed the package already within our R environment
    library(cluster)
    In [ ]: #below code to first verify if the library is installed in the R environment,
    #if it is not available
    # then the package will get installed.
    if(!library(cluster)){
    install.pacakges("cluster")
    }
    basic operations in R In [ ]: # Adding two numericals
    1+1

    #multiplying two numericals
    10*2

    #dividing two numericals
    10/2

    #applying modulus operation on two numericals
    10%%2
    printing results to R console In [ ]: #printing the data on the console
    print(10*2)

    print("data science")

    print(pi^2)
    Variable declaration and assignment in R

    variable assignment: In the below example, we are creating variable named z:

    In [8]: z <- 100

    we use left arrow or = symbol for variable assignment. Its always good
    practice to use left arrow for assignment.

    In [9]: z = 10.009
    z <- 10.009
    Loading existing or default datasets available in R environment

    we can access default datasets avaiable in R using data() function.
    data() function will displays all the avaiable datasets within R.

    In [ ]: data()

    In order to load a specific dataset into R, we need to give the dataset name as argument to the data() function

    In [ ]: data(AirPassengers)
    Viewing data of R objects

    To view first 5 records of a R object (ex:dataframe), we use head() function.
    head() function expects the data object as argument and prints the first 5 records on the R console.

    In [ ]: head(AirPassengers)

    to view all the records in a nice tabular view

    In [ ]: View(AirPassengers)
    Getting the decription and structure of R object

    use str function to see the descriptions of the data object,

    In [ ]: str(AirPassengers)

    http://feeds.feedburner.com/DataPerspective var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: Data Perspective. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    Correlated log-normal chain-ladder model

    Sat, 12/02/2017 - 01:00

    (This article was first published on R on mages' blog, and kindly contributed to R-bloggers)

    On 23 November Glenn Meyers gave a fascinating talk about The Bayesian Revolution in Stochastic Loss Reserving at the 10th Bayesian Mixer Meetup in London.

    Glenn Meyers speaking at the Bayesian Mixer

    Glenn worked for many years as a research actuary at Verisk/ ISO, he helped to set up the CAS Loss Reserve Database and published a monograph on Stochastic loss reserving using Bayesian MCMC models.

    In this blog post I will go through the Correlated Log-normal Chain-Ladder Model from his presentation. It is discussed in more detailed in his monograph.

    Glenn kindly shared his code as well, which I have used as a basis for this post.

    Getting the data

    The CAS Loss Reserve Database is an excellent data source to test reserving models. It is hosted on the CAS website and contains historical regulatory filings of US insurance companies.

    The following code allows me to download the data and extract the information for one company, here company 353, which was the example company Glenn used as well.

    library(data.table) CASdata <- fread("http://www.casact.org/research/reserve_data/comauto_pos.csv") createLossData <- function(CASdata, company_code){ compData <- CASdata[GRCODE==company_code, c("EarnedPremNet_C", "AccidentYear", "DevelopmentLag", "IncurLoss_C", "CumPaidLoss_C", "BulkLoss_C")] # rename column names setnames(compData, names(compData), c("premium", "accident_year", "dev", "incurred_loss", "paid_loss", "bulk_loss")) compData <- compData[, `:=`( origin = accident_year - min(accident_year) + 1, # origin period starting from 1, id to identify first origin period origin1id = ifelse(accident_year == min(accident_year), 0, 1), # Reported incurred loss # set losses < 0 to 1, as we will take the log later reported_incurred_loss=pmax(incurred_loss - bulk_loss, 1))] # add calendar period and sort data by dev and then origin compData <- compData[, cal := origin + dev - 1][order(dev, origin)] compData <- compData[, `:=`( reported_incurred_loss_train = ifelse(cal <= max(origin), reported_incurred_loss, NA), reported_incurred_loss_test = ifelse(cal > max(origin), reported_incurred_loss, NA))] traintest <- rbindlist(list(compData[cal <= max(origin)], compData[cal > max(origin)])) return(traintest) } lossData <- createLossData(CASdata, company_code = 353)

    The data shows the historical annual developments of incurred claims for accident years 1988 to 1997. I separated the data into a training and test data set. The training data will have incurred claims reported up to calendar year 1997, while data from 1998 to 2006 will be used to test the model.

    Let’s take a look at the data for Commercial Auto of company 353.

    devPlot <- function(x, data, company_code, ...){ library(lattice) key <- list(rep=FALSE, columns=2, lines=list(col=c("#00526D", "#00526D"), type=c("p", "p"), pch=c(19, 1)), text=list(lab=c("Observation", "Hold out observation"))) xyplot(x, data, t=c("b", "b"), pch=c(19, 1), col=c("#00526D", "#00526D"), layout=c(5,2), par.settings = list(strip.background=list(col="#CBDDE6")), par.strip.text = list(font = 2), key = key, as.table=TRUE, scales=list(alternating=1), ylab = "Reported incurred loss ($k)", xlab="Development year", main="Reported incurred loss development by accident year", sub=paste("Data source: CAS Loss Reserving Database, Comm. Auto, Comp.", company_code), ...) } devPlot(reported_incurred_loss_train + reported_incurred_loss_test ~ dev | factor(accident_year), data=lossData, company_code = 353)

    The data appears to be reasonably well behaved. Although the years converge to different levels of ultimate incurred claims, the shape of the curves look similar for most years. The accident years 1988 and 1993 show a distinctly different pattern.

    The correlated log-normal chain-ladder model

    The correlated log-normal chain-ladder model combines ideas of the classical chain-ladder method, the growth curve model and Bayesian inference.

    \[
    \begin{align}
    C_{i,j} & \sim \log\mathcal{N}(\mu_{i,j}, \sigma^2_j)\\
    L_i & = P_i \cdot \ell\\
    \mu_{1,j} & = \log(L_1) + \beta_j \\
    \mu_{i,j} & = \log(L_i) + \alpha_i + \beta_j + \rho \cdot \left(\log(C_{i-1,j}) – \mu_{i-1,j}\right) \\
    & \mbox{for } i = 2, \dots, M \mbox{ and } j = 1, \dots, N+1-i \\
    & \mbox{and } \alpha_1 := 0,\, \beta_N := 0\\
    \sigma^2_j & = \sum_{k=j}^N a_k \\
    & \mbox{with priors}\\
    \alpha_i & \sim \mathcal{N}(0, 10) \\
    \beta_i & \sim \mathcal{N}(0, 10) \\
    \log(\ell) & \sim \mathcal{N}(0, 1) \\
    \rho & \sim \mbox{Beta}(2, 2)\\
    a_k & \sim \mbox{Uniform}(0,1)\\
    &\mbox{and}\\
    C_{i,j} &:=\mbox{cumulative incurred claims of origin } i\mbox{, development }j \\
    P_{i} & := \mbox{premium of origin } i\\
    \ell & := \mbox{'population' loss ratio across all origin periods}\\
    L_i & := \mbox{initial expected ultimate loss for origin } i\\
    M & := \mbox{number of origin periods} \\
    N & := \mbox{number of development periods}
    \end{align}
    \]

    Given that we assume the losses follow a log-normal distribution we have:

    \[
    \begin{align}
    \mbox{Median}(C_{i,j}) & = L_i \cdot \exp(\mu_{i,j})\\
    \mathbb{E}(C_{i,j}) & = L_i \cdot \exp\left(\mu_{i,j} + \frac{1}{2} \sigma_j^2 \right)
    \end{align}
    \] Similar to the chain-ladder method we have one parameter for each development period \(\beta_j\) and one parameter for each origin period \(\alpha_i\).

    But unlike the Mack-chain-ladder model, Glenn allows for correlation between origin periods \(i\) and \(i-1\) in his model: \(\rho \cdot \left(\log(C_{i-1,j}) – \mu_{i-1,j}\right)\).

    Interestingly as well, Glenn assumes that the volatility shrinks as claims mature over development periods, modelling \(\sigma_j^2\) as the sum of uniform variances.

    This model is certainly not short on parameters. I wonder, if it is over-parametrised? Does it provide good in sample prediction, but perform poorly out of sample?

    Stan model

    So let’s put this model into Stan. Again, I follow Glenn’s implementation, but I have changed some of the variable names and added some lines in the generated quantities block to predict incurred claims for the test data period.

    library(rstan) rstan_options(auto_write = TRUE) options(mc.cores = parallel::detectCores()) data{ int len_data; // number of rows with data int len_pred; // number of rows to predict // indicator of first origin period int origin1id[len_data + len_pred]; real logprem[len_data + len_pred]; real logloss[len_data]; int origin[len_data + len_pred]; // origin period int dev[len_data + len_pred]; // development period } transformed data{ int n_origin = max(origin); int n_dev = max(dev); int len_total = len_data + len_pred; } parameters{ real r_alpha[n_origin - 1]; real r_beta[n_dev - 1]; real log_elr; real a_ig[n_dev]; real r_rho; real logloss_pred[len_pred]; } transformed parameters{ real alpha[n_origin]; real beta[n_dev]; real sig2[n_dev]; real sig[n_dev]; real mu[len_data]; real mu_pred[len_pred]; real rho; rho = -2*r_rho + 1; for (i in 1:(n_dev - 1)){ beta[i] = r_beta[i]; } beta[n_dev] = 0; alpha[1] = 0; for (i in 2:n_origin){ alpha[i] = r_alpha[i-1]; } // Create ascending set of sig2 sig2[n_dev] = gamma_cdf(1/a_ig[n_dev],1,1); // map into [0,1] for (i in 1:(n_dev-1)){ sig2[n_dev - i] = sig2[n_dev + 1 - i] + gamma_cdf(1/a_ig[i],1,1); } for (i in 1:n_dev){ sig[i] = sqrt(sig2[i]); } // first origin and dev period (top left corner of triangle) mu[1] = logprem[1] + log_elr + beta[dev[1]]; for (i in 2:len_data){ mu[i] = logprem[i] + log_elr + alpha[origin[i]] + beta[dev[i]] + rho*(logloss[i-1] - mu[i-1]) * origin1id[i]; } mu_pred[1] = logprem[(len_data) + 1] + alpha[origin[len_data + 1]] + log_elr + beta[dev[len_data + 1]] + rho*(logloss[len_data] - mu[len_data]) * origin1id[len_data + 1]; for (i in 2:len_pred){ mu_pred[i] = logprem[len_data + i] + alpha[origin[len_data + i]] + log_elr + beta[dev[len_data + i]] + rho*(logloss_pred[i-1] - mu_pred[i-1]) * origin1id[len_data + i]; } } model { log_elr ~ normal(0, 1); r_alpha ~ normal(0, sqrt(10/1.0)); r_beta ~ normal(0, sqrt(10/1.0)); a_ig ~ inv_gamma(1,1); // inverse gamma for numerical resaons r_rho ~ beta(2,2); // model where we have data for (i in 1:(len_data)){ logloss[i] ~ normal(mu[i], sig[dev[i]]); } // model where data is missing, the prediction period for (i in 1:(len_pred)){ logloss_pred[i] ~ normal(mu_pred[i], sig[dev[len_data + i]]); } } generated quantities{ vector[len_data] log_lik; vector[len_total] ppc_loss; for (i in 1:len_data){ log_lik[i] = normal_lpdf(logloss[i] | mu[i], sig[dev[i]]); } // simulate posterior predicted losses for (i in 1:len_data){ ppc_loss[i] = exp(normal_rng(mu[i], sig[dev[i]])); } for (i in 1:len_pred){ ppc_loss[len_data + i] = exp(normal_rng(mu_pred[i], sig[dev[len_data + i]])); } }

    The next code block prepares the data as an input for Stan.

    createStanDataList <- function(lossData){ with(lossData, { train_idx <- !is.na(reported_incurred_loss_train) list( len_data = sum(train_idx), len_pred = sum(!train_idx), logprem = log(premium), logloss = log(reported_incurred_loss_train[train_idx]), origin = origin, dev = dev, origin1id = origin1id) }) } stan_data <- createStanDataList(lossData) Model run for company 353

    Finally, we can run our Stan model for company 353.

    fitCCL353 <- sampling(CCLmodel, data=stan_data, seed = 1234, iter = 4000, control=list(adapt_delta = 0.99, max_treedepth = 10)) ## Warning: There were 4824 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See ## http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded ## Warning: There were 4 chains where the estimated Bayesian Fraction of Missing Information was low. See ## http://mc-stan.org/misc/warnings.html#bfmi-low ## Warning: Examine the pairs() plot to diagnose sampling problems

    Stan comes back with a couple of warnings and messages to investigate the model in more detail.

    I get pretty much the same output as Glenn (see slides 19, 20):

    print(fitCCL353, pars=c("alpha", "beta", "rho", "log_elr", "sig"), probs=c(0.025, 0.975)) ## Inference for Stan model: 05311aae980b7925c9bb0a91cd33e3a7. ## 4 chains, each with iter=4000; warmup=2000; thin=1; ## post-warmup draws per chain=2000, total post-warmup draws=8000. ## ## mean se_mean sd 2.5% 97.5% n_eff Rhat ## alpha[1] 0.00 0.00 0.00 0.00 0.00 8000 NaN ## alpha[2] -0.26 0.00 0.02 -0.29 -0.23 2770 1.00 ## alpha[3] 0.11 0.00 0.02 0.06 0.15 1279 1.00 ## alpha[4] 0.21 0.00 0.03 0.16 0.26 1314 1.00 ## alpha[5] 0.01 0.00 0.03 -0.06 0.07 699 1.00 ## alpha[6] -0.06 0.00 0.04 -0.13 0.03 1694 1.00 ## alpha[7] 0.45 0.00 0.06 0.33 0.56 1432 1.00 ## alpha[8] 0.03 0.00 0.08 -0.13 0.20 1790 1.00 ## alpha[9] 0.15 0.00 0.14 -0.14 0.43 1341 1.00 ## alpha[10] 0.18 0.01 0.29 -0.36 0.77 1300 1.01 ## beta[1] -0.59 0.00 0.11 -0.83 -0.38 4196 1.00 ## beta[2] -0.19 0.00 0.07 -0.32 -0.05 2987 1.00 ## beta[3] -0.10 0.00 0.05 -0.20 0.00 1821 1.00 ## beta[4] -0.03 0.00 0.04 -0.10 0.05 1352 1.00 ## beta[5] -0.01 0.00 0.03 -0.07 0.05 1174 1.00 ## beta[6] 0.00 0.00 0.03 -0.06 0.06 1169 1.00 ## beta[7] 0.00 0.00 0.03 -0.05 0.06 1010 1.00 ## beta[8] 0.01 0.00 0.02 -0.05 0.06 1257 1.00 ## beta[9] 0.00 0.00 0.02 -0.05 0.05 1662 1.00 ## beta[10] 0.00 0.00 0.00 0.00 0.00 8000 NaN ## rho 0.17 0.00 0.21 -0.27 0.55 2523 1.00 ## log_elr -0.39 0.00 0.01 -0.43 -0.37 1207 1.00 ## sig[1] 0.26 0.00 0.09 0.14 0.51 3428 1.00 ## sig[2] 0.15 0.00 0.04 0.09 0.26 3884 1.00 ## sig[3] 0.09 0.00 0.03 0.05 0.16 1856 1.00 ## sig[4] 0.06 0.00 0.02 0.03 0.11 467 1.01 ## sig[5] 0.04 0.00 0.02 0.02 0.09 328 1.01 ## sig[6] 0.04 0.00 0.02 0.02 0.07 290 1.01 ## sig[7] 0.03 0.00 0.01 0.01 0.06 291 1.01 ## sig[8] 0.02 0.00 0.01 0.01 0.05 289 1.01 ## sig[9] 0.02 0.00 0.01 0.01 0.04 294 1.01 ## sig[10] 0.01 0.00 0.01 0.00 0.03 330 1.01 ## ## Samples were drawn using NUTS(diag_e) at Sun Dec 3 21:26:56 2017. ## For each parameter, n_eff is a crude measure of effective sample size, ## and Rhat is the potential scale reduction factor on split chains (at ## convergence, Rhat=1).

    Some of the parameters don’t appear significant, such as \(\beta_5\) to \(\beta_9\), but then again they shouldn’t have done any harm here either, as they will have had little impact.

    However, I am most interested in comparing the posterior predictive distribution with the training and test data. How does the model perform out of sample?

    The next code chunk extracts the 95% credible interval from the posterior predictive simulated losses and plots the output.

    createPlotData <- function(stanfit, data, probs=c(0.25, 0.975)){ ppc_loss <- as.matrix(extract(stanfit, "ppc_loss")$ppc_loss) ppc_loss_summary <- cbind( mean=apply(ppc_loss, 2, mean), t(apply(ppc_loss, 2, quantile, probs=probs)) ) colnames(ppc_loss_summary) = c( "Y_pred_mean", paste0("Y_pred_cred", gsub("\\.", "", probs[1])), paste0("Y_pred_cred", gsub("\\.", "", probs[2]))) return(cbind(ppc_loss_summary, data)) } plotDevBananas <- function(x, data, company_code, xlab="Development year", ylab="Reported incurred loss ($k)", main="Correlated Log-normal Chain Ladder Model", ...){ key <- list( rep=FALSE, lines=list(col=c("#00526D", "#00526D", "purple"), type=c("p", "p", "l"), pch=c(19, 1, NA)), text=list(lab=c("Observation", "Hold out observation", "Mean estimate")), rectangles = list(col=adjustcolor("yellow", alpha.f=0.5), border="grey"), text=list(lab="95% Prediction credible interval")) xyplot(x, data=data,as.table=TRUE,xlab=xlab, ylab=ylab, main=main, sub=paste("Data source: CAS Loss Reserving Database,", "Comm. Auto, Comp.", company_code), scales=list(alternating=1), layout=c(5,2), key=key, par.settings = list(strip.background=list(col="#CBDDE6")), par.strip.text = list(font = 2), panel=function(x, y){ n <- length(x) divisor <- 5 cn <- c(1:(n/divisor)) upper <- y[cn+n/divisor*0] lower <- y[cn+n/divisor*1] x <- x[cn] panel.polygon(c(x, rev(x)), c(upper, rev(lower)), col = adjustcolor("yellow", alpha.f = 0.5), border = "grey") panel.lines(x, y[cn+n/divisor*2], col="purple") panel.points(x, y[cn+n/divisor*4], lwd=1, col="#00526D") panel.points(x, y[cn+n/divisor*3], lwd=1, pch=19, col="#00526D") }, ...) } plotData <- createPlotData(fitCCL353, data=lossData) plotDevBananas(Y_pred_cred025 + Y_pred_cred0975 + Y_pred_mean + reported_incurred_loss_train + reported_incurred_loss_test ~ dev | factor(accident_year), data=plotData, company_code = 353)

    This looks pretty good!

    We can see for the older years that the credible interval shrinks as the development years progress. The skewness of the log-normal distribution is clearly visible for the most recent accident years. In all cases the hold out observations are within the 95% prediction credible interval, often very close to the mean, apart from the years 1994 and 1995, where we observe a more unusual pattern in the data.

    Finally, here is the distribution of the ‘population’ loss ratio \(\ell\) across all accident years and correlation parameter \(\rho\).

    summary(elr <- exp(extract(fitCCL353, "log_elr")$log_elr)) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.6033 0.6695 0.6740 0.6739 0.6786 0.7380 summary(rho <- extract(fitCCL353, "rho")$rho) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## -0.86328 0.03551 0.18278 0.17077 0.31764 0.87749

    The distribution of \(\rho\) is very interesting. Many of the traditional reserving methods, including the Mack-chain-ladder model assume that the accident years are independent. However, for this data set it is unlikely to be valid. Indeed, the probability of a positive correlation is 80%.

    library(MASS); library(latex2exp) truehist(rho, col="skyblue", xlab=TeX("$\\\\rho$")); abline(v=0, col=2)

    Company 833

    Let’s look at another company. Here is the data for company 833.

    lossData <- createLossData(CASdata, company_code = 833) devPlot(reported_incurred_loss_train + reported_incurred_loss_test ~ dev | factor(accident_year), data=lossData, company_code = 833)

    This data is not as well behaved as for company 353. The shape of the curves do vary quite a bit from one accident year to the next. Let’s find out how well our model predicts the hold out sample in this case.

    stan_data <- createStanDataList(lossData) fitCCL833 <- sampling(CCLmodel, data=stan_data, seed = 1234, iter = 4000, control=list(adapt_delta = 0.99, max_treedepth = 10)) ## Warning: There were 28 divergent transitions after warmup. Increasing adapt_delta above 0.99 may help. See ## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup ## Warning: There were 1443 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See ## http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded ## Warning: There were 4 chains where the estimated Bayesian Fraction of Missing Information was low. See ## http://mc-stan.org/misc/warnings.html#bfmi-low ## Warning: Examine the pairs() plot to diagnose sampling problems

    Stan gives messages back, which I shall ignore for the time being and instead look at my ‘banana’ plot again.

    plotData <- createPlotData(fitCCL833, lossData) plotDevBananas(Y_pred_cred025 + Y_pred_cred0975 + Y_pred_mean + reported_incurred_loss_train + reported_incurred_loss_test ~ dev | factor(accident_year), data=plotData, company_code = 833)

    Interesting! Not too bad either.

    Company 25275

    Here is another company, whose data show some unusual patterns.

    ## Other companies lossData <- createLossData(CASdata, company_code = 25275) devPlot(reported_incurred_loss_train + reported_incurred_loss_test ~ dev | factor(accident_year), data=lossData, company_code = 25275)

    Let’s fit this data with the same model as well.

    stan_data <- createStanDataList(lossData) fitCCL25275 <- sampling(CCLmodel, data=stan_data, seed = 1234, iter = 4000, control=list(adapt_delta = 0.99, max_treedepth = 10)) ## Warning: There were 132 divergent transitions after warmup. Increasing adapt_delta above 0.99 may help. See ## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup ## Warning: There were 1738 transitions after warmup that exceeded the maximum treedepth. Increase max_treedepth above 10. See ## http://mc-stan.org/misc/warnings.html#maximum-treedepth-exceeded ## Warning: There were 4 chains where the estimated Bayesian Fraction of Missing Information was low. See ## http://mc-stan.org/misc/warnings.html#bfmi-low ## Warning: Examine the pairs() plot to diagnose sampling problems plotData <- createPlotData(fitCCL25275, lossData) plotDevBananas(Y_pred_cred025 + Y_pred_cred0975 + Y_pred_mean + reported_incurred_loss_train + reported_incurred_loss_test ~ dev | factor(accident_year), data=plotData, company_code = 25275, ylim=c(0, 500))

    Well, what do you think about that?

    References

    Stochastic Loss Reserving Using Bayesian McMc Models. Glenn Meyers. CAS monograph series. Number 1. Casualty Actuarial Society. 2015

    Session Info sessionInfo() ## R version 3.4.2 (2017-09-28) ## Platform: x86_64-apple-darwin15.6.0 (64-bit) ## Running under: macOS High Sierra 10.13.1 ## ## Matrix products: default ## BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib ## LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib ## ## locale: ## [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8 ## ## attached base packages: ## [1] methods stats graphics grDevices utils datasets base ## ## other attached packages: ## [1] latex2exp_0.4.0 MASS_7.3-47 rstan_2.16.2 ## [4] StanHeaders_2.16.0-1 ggplot2_2.2.1 lattice_0.20-35 ## [7] data.table_1.10.4-3 ## ## loaded via a namespace (and not attached): ## [1] Rcpp_0.12.14 knitr_1.17 magrittr_1.5 munsell_0.4.3 ## [5] colorspace_1.3-2 rlang_0.1.4 stringr_1.2.0 plyr_1.8.4 ## [9] tools_3.4.2 parallel_3.4.2 grid_3.4.2 gtable_0.2.0 ## [13] htmltools_0.3.6 yaml_2.1.14 lazyeval_0.2.1 rprojroot_1.2 ## [17] digest_0.6.12 tibble_1.3.4 bookdown_0.5 gridExtra_2.3 ## [21] codetools_0.2-15 inline_0.3.14 evaluate_0.10.1 rmarkdown_1.8 ## [25] blogdown_0.3 stringi_1.1.6 compiler_3.4.2 scales_0.5.0 ## [29] backports_1.1.1 stats4_3.4.2 var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: R on mages' blog. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    Hosting RStudio Server on Azure

    Sat, 12/02/2017 - 01:00

    (This article was first published on R on The Jumping Rivers Blog, and kindly contributed to R-bloggers)

    Can’t be bothered reading, tell me now

    Host RStudio server on an azure instance. Configure the instance to access RStudio with a nice url

    Getting started

    Azure is cloud computing framework provided by Microsoft, the same idea as AWS by Amazon. In this post, we’ll describe how to use Azure to run RStudio Server in the cloud.

    Unfortunately, things don’t start well – Microsoft have made an endurance test of getting started with Azure. The first stop is the Azure web-page. On this page

    click on Free Account and follow the instructions. This is a bit of painful process that will require

    • Email confirmation
    • Text confirmation
    • Credit Card confirmation

    Eventually you should get to the dashboard page!

    Clicking on Create Resources will take you to the marketplace

    Selecting Ubuntu Server will launch a dialogue box with four steps:

    • Step 1: Basics: configuration settings
      • Name: A name for the virtual machine, e.g. rstudio
      • User name: The master user who will have sudo access, e.g. userX
      • Authentication type: Either choose ssh or enter a password
      • Resource group: Since this your first instance, create a new one, say rstudio-group
      • Location: where will your machine be located
    • Step 2: Virtual machine size
      • Select the machine you want. Choose the smallest for the purposes of this exercise
    • Step 3: Settings
      • Nothing to change here
    • Step 4: Summary
      • Click create and we’re good to go!

    After around a minute or so, your virtual machine will be ready.

    Setting up R

    The next step is to ssh into your instance. On the dashboard screen, click on the new box that shows your virtual machine. Select Networking. Near the top of the screen will be a Public IP address, of the form: XXX.XXX.XXX.XXX. In my instance, the IP address is 52.233.194.195

    Make a note of your address. Next ssh into your instance via

    ssh userX@XXX.XXX.XXX.XXX

    To ensure that ubuntu is up-to-date on our virtual machine, we invoke super sudo powers. First we update the list of ubuntu packages

    sudo apt-get update

    Then we upgrade as necessary

    sudo apt-get upgrade

    Now we get on with the business of installing R. To use the latest version we need to add a new repository

    sudo add-apt-repository ppa:marutter/rrutter

    Then update again and install base R

    sudo apt update sudo apt-get install r-base

    Depending on what R packages you want to install it’s worth installing a couple of other things at this point

    sudo apt-get install libxml2 libxml2-dev # igraph sudo apt-get install libcairo2-dev # Graphics packages sudo apt-get install libssl-dev libcurl4-openssl-dev #httr

    With an eye to the future it’s also worth installing apache2 to help with redirects

    sudo apt-get install apache2 Opening ports ready for RStudio

    Whenever you access a web-page, the browser specifies a port. For standard http pages, we use port 80, for secure https pages, we use port 443. For example, when we type

    https://www.jumpingrivers.com

    in the browser, this is converted to

    https://www.jumpingrivers.com:443

    By default our azure instance only has port 22 open (the port used for ssh communication). To access RStudio, we’ll need to open the following ports

    • 80 (for http)
    • 443 (for https); only required if we implement SSL
    • 8787 – the default RStudio port. In the last section, we’ll remove this, but just now it’s handy to have it open for testing.

    Under Networking, click Add inbound port rule and add the three ports (80, 443, 8787):

    If everything is working, you should be able to enter XXX.XXX.XXX.XXX in your browser and you’ll see the Apache2 Ubuntu Default Page with the title. It works!

    Installing RStudio

    Installing RStudio server is now relatively easy:

    # Check the above link for updates to the version sudo apt-get install gdebi-core wget https://download2.rstudio.org/rstudio-server-1.1.383-amd64.deb sudo gdebi rstudio-server-1.1.383-amd64.deb

    If everything works correctly, you should be able to view rstudio server via

    XXX.XXX.XXX.XXX:8787

    If the page hangs, double check you have opened port 8787 under the network settings.

    Nicer URLs

    The first step is to access the page via a standard URL and not an IP address. In the main dashboard screen, under all resources, click on

    rstudio-ip Public IP address

    Then select configuration. In the text box under DNS Label, enter text, e.g. rstudio-myname. So in my case, I have used rstudio-jumpingrivers

    This means we can now access RStudio via

    rstudio-jumpingrivers.westeurope.cloudapp.azure.com:8787

    Getting users to type the port number isn’t ideal. What we would like is for users to type

    rstudio-jumpingrivers.westeurope.cloudapp.azure.com/rstudio

    This involves configuring Apache. First navigate to /etc/apache2/sites-available, e.g.

    cd /etc/apache2/sites-available

    Next create a file called rstudio.conf. Using your favourite text editor, e.g. vim or nano. Note that this file is very much space sensitive, so check it carefully.

    ServerAdmin info@jumpingrivers.com ServerName rstudio-jumpingrivers.westeurope.cloudapp.azure.com ServerAlias www.rstudio-jumpingrivers.westeurope.cloudapp.azure.com Allow from localhost # Specify path for Logs ErrorLog ${APACHE_LOG_DIR}/error.log CustomLog ${APACHE_LOG_DIR}/access.log combined RewriteEngine on # Following lines should open rstudio directly from the url # Map rstudio to rstudio/ RedirectMatch ^/rstudio$ /rstudio/ RewriteCond %{HTTP:Upgrade} =websocket RewriteRule /rstudio/(.*) ws://localhost:8787/$1 [P,L] RewriteCond %{HTTP:Upgrade} !=websocket RewriteRule /rstudio/(.*) http://localhost:8787/$1 [P,L] ProxyPass /rstudio/ http://localhost:8787/ ProxyPassReverse /rstudio/ http://localhost:8787/ ProxyRequests off

    Then enable the necessary Apache modules

    sudo a2enmod proxy sudo a2enmod proxy_http sudo a2enmod proxy_html sudo a2enmod proxy_wstunnel sudo a2enmod rewrite

    Finally, restart Apache

    sudo a2ensite rstudio.conf sudo service apache2 restart

    You should now be able to access RStudio via

    rstudio-jumpingrivers.westeurope.cloudapp.azure.com/rstudio/ Adding SSL

    In theory it should be straightforward to add SSL support using Let’s Encrypt. However, I’ve found that you hit rate limiters since the domain is azure.com. However, if we register our own domain, we can easily add SSL support. This will be the subject of our next blog post.

    References

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: R on The Jumping Rivers Blog. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    A Public Apology to Tal/R-Bloggers + The Trouble With Tibbles

    Fri, 12/01/2017 - 23:18

    (This article was first published on R – rud.is, and kindly contributed to R-bloggers)

    Over the past few weeks, I had been noticing that some posts in the R-bloggers feed were getting truncated in Feedly. I don’t remember when I noticed that since I usually click through immediately from the headline entry to the R-bloggers page vs read in Feedly since ultimately I want to get to the author’s site to see it formatted they way they intended it to be.

    I let frustration get the better of me and — without verifying with Tal first — tweeted in error in said frustration. I’m not going to perform an extensive validation on the R-Bloggers feed always pushing out full content as Tal say they do.

    Tal (and any other folks who work with Tal on R-Bloggers): I apologize for the tweet content and the tone of the tweet, but more apologize for not reaching out directly as if I had the following would have likely emerged after dual investigations. So, I’m really daft on at least two accounts. I will also apologize again, in-person, if we manage to cross paths in 2018. Hopefully said apology will be over a delightful beverage (on me — well, hopefully you won’t actually dump said beverage on me, but you’d be right to do so).

    The truncated posts (anyone with Feedly can likely validate my experience) seems to be a combination of issues with a common thread: the tibble. I’m going to use the tibble 1.2.0 post [R-Bloggers link] from RStudio as an example. I have to use pictures (apologies), but you’ll see why in a bit.

    The Trouble With Tibbles

    This is a snap from the early part of the aforementioned post:

    Here’s that content on R-Bloggers:

    Now you get to play that favorite childhood game of yours: spot the difference.

    You should notice the angle-bracket type headers are missing on R-Bloggers version of the post.

    While they are visually missing, they are not — in fact — missing. They are there:

    But, HTML wonks have likely already figured out the issue.

    Here’s what the source view from RStudio’s blog looks like:

    One more opportunity to play “spot the difference”.

    That difference can wreak havoc with further HTML/XML post-processors (inspect the elements in different browsers or via rvest/xml2) and it seems Feedly’s ingestion process is doing the truncation when it hits invalid HTML.

    This means that tibble output will likely cause more posts to be truncated in feed viewers pulling from R-Bloggers (I verified this with a sample of other, recent posts that I knew used tibble output).

    Both R-Bloggers and Feedly should work on said issues. I’ll be pinging Feedly and I’m sure after I tweet this post out Tal will see it.

    FIN

    Tal: I promise to bring up any further issues with you directly and re-iterate my apology one more time.

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: R – rud.is. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    A case study in messy data analysis: the Australian same-sex marriage survey

    Fri, 12/01/2017 - 20:23

    (This article was first published on Revolutions, and kindly contributed to R-bloggers)

    Last month the Australian people signaled their approval of legalizing same-sex marriage by a 62%:38% margin in a national survey. (On a personal note, I was elated and relieved by the result: my husband and I have discussed eventually retiring to Australia, and with this decision our marriage would be recognized there.) While fears of a surprise Brexit-like electoral backlash proved unfounded, researchers including R user Miles McBain explored the results for correlations to demographic variables. This process wasn't as simple as it might have been though: the Australian Bureau of Statistics released the results as a pair of Excel files that violate just about every good practice for sharing data in spreadsheets:

    Miles shares the R code he used to extract useful data from this spreadsheet as a blog post that makes a great case study in dealing with messy data using R. The post demonstrates how he used the read_excel function (from readxl package) to extract specific sub-tables from the spreadsheet by specifying row and column ranges, and then use the dplyr package to clean up and merge the data. If you want to explore the data yourself, you can find the R code and the source data in this Github repository.

    In a follow-up post, Miles combines the same-sex marriage survey data with Australian Census data to explore various demographic relationships. Unlike the US Census data (which is easily accessible in R thanks to the tidycensus package), there's no interface package for Australian Census data. (Selected tables are available in the Census2016 package, however.) Instead, Miles demonstrates how to use R to download and extract data from the the "Census DataPacks" (CSV data files and Excel data dictionaries) provided by the Australian Bureau of Statistics.  Yet more data wrangling allows Miles to create summary charts of the responses, such as this chart of proportion voting No by percent of the district population declaring a religious affiliation, broken down by state. As you may expect, those districts with more religious populations voted No at greater rates.

    Both of these post provide great examples of working with government data, which is often provided in inconvenient formats with messy structures. Follow the links below for step-by-step guides, including the R code used to extract the data, structure it for analysis, and create useful charts.

    Medium (Miles McBain): Tidying the Australian Same Sex Marriage Postal Survey Data with RCombining Australian Census data with the Same Sex Marriage Postal Survey in R

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: Revolutions. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    Note On My Emerging Workflow for Working With Binderhub

    Fri, 12/01/2017 - 15:23

    (This article was first published on Rstats – OUseful.Info, the blog…, and kindly contributed to R-bloggers)

    Yesterday saw the public reboot of Binder / MyBinder (which I first wrote about a couple of years ago here), as reported in The Jupyter project blog post Binder 2.0, a Tech Guide and this practical guide: Introducing Binder 2.0 — share your interactive research environment.

    For anyone not familiar with Binder / MyBinder, it’s a service that will launch a fully running Jupyter notebook server and computing environment based the contents of a Github repository (config files as well as notebooks).  What this means is that if you put your Jupyter notebooks into a Github repository, along with one or two simple files that least any Linux or Python packages you need to install in order to run the code in the notebooks (or R packages and perhaps Rmd files if you also install an R kernel/RStudio), you can get a browser access to that running environment at just the click of a link. And the generosity of whoever is paying for the servers the notebook server runs on.

    The system has been rebuilt to use Jupyterhub, with a renaming as far as the codebase goes to Binderhub. There are also several utility tools associated with the project, including the really handy repo2docker that builds a Docker image from the contents of a local folder or Github repository.

    One of the things that particularly interested me in the announcement blog posts was the following aspirational remark:

    We would love to see others deploy their own BinderHub servers, either for their own communities, or as part of a federated public service of BinderHubs.

    I’d love to see the OU get behind this, either directly or under the banner of OpenLearn, as part of an effort to help make Jupyter powered interactive open educational materials available without the need to install any software.

    (I tried to pitch it to FutureLearn to help support the OU/FutureLearn Learn to Code for Data Analysis MOOC when we were writing that course, but they weren’t interested…)

    One disadvantage is Binderhub is a stateless service, which means you need to download any notebooks you’re working on and them upload them again yourself if you stop an interactive session: the environment you were working in is personal to you, but it’s also destroyed whenever you close the session (or after a particular amount of time? So other solutions are required for persisting state (i.e. having a personal file storage area). Jupyterhub is one way to do that (and one of the things we’re starting to explore in the OU at the moment).

    Through playing with Binderhub over the last couple of weeks as part of an attempt to put together some demos for how to use Jupyter notebooks to support the creation of educational content that contains rich content (images, interactives) from specifications contained within the notebook document (think: writing diagrams) I’ve come to the following workflow:

    • create a Github repository to host different builds (example). In my case, these are for different topic areas; but they could be different research projects, courses, data journalism investigations, etc.
    • put each build in a branch (example);
    • work up the build instructions for the environment either using Github/Binder or locally; I was having to use Github/Binder because I was working on a slow network connection that made building my evolving image difficult. But it meant that every time I made a change to the build, it used up Binder resources to do so.
    • if the build is a big one, it can take time to complete. I think that Binder will rebuild the Docker image each time you update the repo, so even if you only update notebook files, then *I think* that that package installation steps are also run even if those files *haven’t* changed? To simplify this process, we can instead create a Docker image from out build files and push that to Dockerhub (example).
    • We can then then create a new build process for our working repository that pulls the pre-built image (containing all the required packages) and adds in the working notebooks (example).
    • We can also share a minimum viable repository that can be forked to allow other people to use the same environment (example).

    One advantage of this route is that it separates “sys admin” concerns – building and installing the required packages – from “working” concerns relating to developing the contents of the notebooks. (I think the working repository that uses the Dockerfile build can also draw on the postbuild file to add in any additional or missing packages, which can then be added to the container build as part of a maintenance step.)

    PS picking up on a recent related Downes presentation – Applications, Algorithms and Data: Open Educational Resources and the Next Generation of Virtual Learning – and a response from @jimgroom that I really need to comment back on – Containing the Future of OER – this phrase comes to mind: “syndicated runtime” eg if you syndicate the HTML version of a notebook via an RSS feed with a link back to the Binder runnable version of it…

    var vglnk = { key: '949efb41171ac6ec1bf7f206d57e90b8' }; (function(d, t) { var s = d.createElement(t); s.type = 'text/javascript'; s.async = true; s.src = '//cdn.viglink.com/api/vglnk.js'; var r = d.getElementsByTagName(t)[0]; r.parentNode.insertBefore(s, r); }(document, 'script'));

    To leave a comment for the author, please follow the link and comment on their blog: Rstats – OUseful.Info, the blog…. R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: Data science, Big Data, R jobs, visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

    Pages